计算机科学
人工智能
支持向量机
机器学习
编码(集合论)
源代码
人工神经网络
回归
特征提取
代表(政治)
特征(语言学)
模式识别(心理学)
统计
数学
集合(抽象数据类型)
程序设计语言
操作系统
语言学
哲学
政治
政治学
法学
作者
Sandra Ottl,Shahin Amiriparian,Maurice Gerczuk,Björn W. Schuller
出处
期刊:iScience
[Elsevier]
日期:2022-08-01
卷期号:25 (8): 104644-104644
被引量:15
标识
DOI:10.1016/j.isci.2022.104644
摘要
In this article, human semen samples from the Visem dataset are automatically assessed with machine learning methods for their quality with respect to sperm motility. Several regression models are trained to automatically predict the percentage (0–100) of progressive, non-progressive, and immotile spermatozoa. The videos are adopted for unsupervised tracking and two different feature extraction methods—in particular custom movement statistics and displacement features. We train multiple neural networks and support vector regression models on the extracted features. Best results are achieved using a linear Support Vector Regressor with an aggregated and quantized representation of individual displacement features of each sperm cell. Compared to the best submission of the Medico Multimedia for Medicine challenge, which used the same dataset and splits, the mean absolute error (MAE) could be reduced from 8.83 to 7.31. We provide the source code for our experiments on GitHub (Code available at: https://github.com/EIHW/motilitAI).
科研通智能强力驱动
Strongly Powered by AbleSci AI