Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images

多光谱图像 人工智能 Boosting(机器学习) 计算机科学 图像融合 植被(病理学) 特征选择 随机森林 遥感 全色胶片 降维 算法 图像(数学) 地理 医学 病理
作者
Bolin Fu,Pingping Zuo,Man Liu,Guiwen Lan,Hongchang He,Zhinan Lao,Ya Zhang,Donglin Fan,Ertao Gao
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:140: 108989-108989 被引量:30
标识
DOI:10.1016/j.ecolind.2022.108989
摘要

Fine classification of wetland vegetation communities using machine learning algorithm and high spatial resolution images have attracted increased attention. However, there exist several challenges in image fusion, data dimension reduction and algorithm tuning. To resolve these issues, this paper attempts to fuse Unmanned Aerial Vehicle (UAV) images with spaceborne Jilin-1 (JL101K) multispectral images for classifying vegetation communities of karst wetland using the optimized Random Forest (RF), Extreme gradient boosting (XGBoost) and Light Gradient Boosting (LightGBM) algorithms. This study also quantitatively evaluates image fusion quality from spatial detail and spectral fidelity, and explores the effects of different image feature combinations and classifiers on mapping vegetation communities by variable selection and dimensionality reduction. Finally, this paper further evaluates and quantifies the importance and contribution rate of feature variables for typical vegetation communities using Recursive feature elimination (RFE) algorithm. The results showed that: (1) the Gram-Schmidt (GS)algorithm produced the high-quality fusion image of JL101K and UAV, and the fusion image achieved higher overall accuracy (82.8%) than the original JL101K multispectral image; (2) UAV multispectral image and its derivatives (scheme 3) achieved the highest overall accuracy (87.8%) in all classification schemes; (3) The optimized object-based LightGBM algorithm outperformed XGBoost and RF algorithm, which provided an improvement of 0.6%∼3.5% in overall accuracy (OA). McNemar's test indicated that there existed significant differences in vegetation communities’ classification between the three algorithms. (4) The average accuracy (AA) of vegetation communities in karst wetlands was mainly ranged from 60% to 90%. The water hyacinth and herbaceous vegetation were sensitive to the Mean Digital Surface Model (DSM) and Standard RedEdge band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
saily发布了新的文献求助10
3秒前
3秒前
non完成签到,获得积分20
3秒前
3秒前
dd36完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助瑞瑞刘采纳,获得10
5秒前
CipherSage应助瑞瑞刘采纳,获得10
5秒前
善学以致用应助瑞瑞刘采纳,获得10
5秒前
慕青应助瑞瑞刘采纳,获得10
5秒前
斯文败类应助瑞瑞刘采纳,获得10
5秒前
搜集达人应助瑞瑞刘采纳,获得10
5秒前
5秒前
xiaozhang完成签到 ,获得积分10
6秒前
6秒前
希望天下0贩的0应助不喜采纳,获得10
9秒前
alexyang发布了新的文献求助10
9秒前
10秒前
科研小白发布了新的文献求助10
11秒前
阿飞完成签到,获得积分10
12秒前
404NotFOUND完成签到,获得积分10
13秒前
14秒前
16秒前
FashionBoy应助上弦月采纳,获得10
17秒前
23秒前
稳重向南发布了新的文献求助10
24秒前
25秒前
27秒前
28秒前
CipherSage应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
30秒前
浮游应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
烟花应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
小马甲应助科研通管家采纳,获得10
31秒前
叶博完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539051
求助须知:如何正确求助?哪些是违规求助? 3973321
关于积分的说明 12308435
捐赠科研通 3640147
什么是DOI,文献DOI怎么找? 2004375
邀请新用户注册赠送积分活动 1039763
科研通“疑难数据库(出版商)”最低求助积分说明 928957