Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images

多光谱图像 人工智能 Boosting(机器学习) 计算机科学 图像融合 植被(病理学) 特征选择 随机森林 遥感 全色胶片 降维 算法 图像(数学) 地理 医学 病理
作者
Bolin Fu,Pingping Zuo,Man Liu,Guiwen Lan,Hongchang He,Zhinan Lao,Ya Zhang,Donglin Fan,Ertao Gao
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:140: 108989-108989 被引量:30
标识
DOI:10.1016/j.ecolind.2022.108989
摘要

Fine classification of wetland vegetation communities using machine learning algorithm and high spatial resolution images have attracted increased attention. However, there exist several challenges in image fusion, data dimension reduction and algorithm tuning. To resolve these issues, this paper attempts to fuse Unmanned Aerial Vehicle (UAV) images with spaceborne Jilin-1 (JL101K) multispectral images for classifying vegetation communities of karst wetland using the optimized Random Forest (RF), Extreme gradient boosting (XGBoost) and Light Gradient Boosting (LightGBM) algorithms. This study also quantitatively evaluates image fusion quality from spatial detail and spectral fidelity, and explores the effects of different image feature combinations and classifiers on mapping vegetation communities by variable selection and dimensionality reduction. Finally, this paper further evaluates and quantifies the importance and contribution rate of feature variables for typical vegetation communities using Recursive feature elimination (RFE) algorithm. The results showed that: (1) the Gram-Schmidt (GS)algorithm produced the high-quality fusion image of JL101K and UAV, and the fusion image achieved higher overall accuracy (82.8%) than the original JL101K multispectral image; (2) UAV multispectral image and its derivatives (scheme 3) achieved the highest overall accuracy (87.8%) in all classification schemes; (3) The optimized object-based LightGBM algorithm outperformed XGBoost and RF algorithm, which provided an improvement of 0.6%∼3.5% in overall accuracy (OA). McNemar's test indicated that there existed significant differences in vegetation communities’ classification between the three algorithms. (4) The average accuracy (AA) of vegetation communities in karst wetlands was mainly ranged from 60% to 90%. The water hyacinth and herbaceous vegetation were sensitive to the Mean Digital Surface Model (DSM) and Standard RedEdge band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴完成签到 ,获得积分10
1秒前
wsh071117完成签到,获得积分10
1秒前
高手如林完成签到,获得积分10
1秒前
我要读博士完成签到 ,获得积分10
4秒前
林荫下的熊完成签到,获得积分10
4秒前
心随风飞完成签到,获得积分10
6秒前
叛逆黑洞完成签到 ,获得积分10
6秒前
与离完成签到 ,获得积分10
7秒前
淼漫完成签到 ,获得积分10
7秒前
cocobear完成签到 ,获得积分10
8秒前
chen完成签到 ,获得积分10
9秒前
撒拉溪吧完成签到 ,获得积分10
9秒前
cherishfawn完成签到 ,获得积分10
12秒前
开放的紫伊完成签到,获得积分10
13秒前
悲伤土豆丝完成签到 ,获得积分10
14秒前
辉辉发布了新的文献求助10
14秒前
别抢我的虾滑完成签到,获得积分10
14秒前
angel发布了新的文献求助10
15秒前
李健应助wsh071117采纳,获得10
15秒前
棋士应助心随风飞采纳,获得30
16秒前
小茵茵完成签到,获得积分10
17秒前
玥瑶完成签到,获得积分20
17秒前
18秒前
bkagyin应助咸鱼王采纳,获得10
20秒前
Fly完成签到 ,获得积分10
20秒前
小屁孩完成签到,获得积分0
20秒前
gcl完成签到,获得积分10
21秒前
21秒前
21秒前
逢场作戱__完成签到 ,获得积分10
23秒前
zyz完成签到,获得积分10
24秒前
玥瑶发布了新的文献求助30
24秒前
詹姆斯哈登完成签到,获得积分10
24秒前
施不评发布了新的文献求助10
26秒前
laola发布了新的文献求助10
26秒前
林lin完成签到,获得积分10
27秒前
吹泡泡的红豆完成签到 ,获得积分10
27秒前
稳重完成签到 ,获得积分10
27秒前
28秒前
tclouds完成签到 ,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950005
求助须知:如何正确求助?哪些是违规求助? 3495301
关于积分的说明 11076249
捐赠科研通 3225853
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839