Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images

多光谱图像 人工智能 Boosting(机器学习) 计算机科学 图像融合 植被(病理学) 特征选择 随机森林 遥感 全色胶片 降维 算法 图像(数学) 地理 医学 病理
作者
Bolin Fu,Pingping Zuo,Man Liu,Guiwen Lan,Hongchang He,Zhinan Lao,Ya Zhang,Donglin Fan,Ertao Gao
出处
期刊:Ecological Indicators [Elsevier]
卷期号:140: 108989-108989 被引量:30
标识
DOI:10.1016/j.ecolind.2022.108989
摘要

Fine classification of wetland vegetation communities using machine learning algorithm and high spatial resolution images have attracted increased attention. However, there exist several challenges in image fusion, data dimension reduction and algorithm tuning. To resolve these issues, this paper attempts to fuse Unmanned Aerial Vehicle (UAV) images with spaceborne Jilin-1 (JL101K) multispectral images for classifying vegetation communities of karst wetland using the optimized Random Forest (RF), Extreme gradient boosting (XGBoost) and Light Gradient Boosting (LightGBM) algorithms. This study also quantitatively evaluates image fusion quality from spatial detail and spectral fidelity, and explores the effects of different image feature combinations and classifiers on mapping vegetation communities by variable selection and dimensionality reduction. Finally, this paper further evaluates and quantifies the importance and contribution rate of feature variables for typical vegetation communities using Recursive feature elimination (RFE) algorithm. The results showed that: (1) the Gram-Schmidt (GS)algorithm produced the high-quality fusion image of JL101K and UAV, and the fusion image achieved higher overall accuracy (82.8%) than the original JL101K multispectral image; (2) UAV multispectral image and its derivatives (scheme 3) achieved the highest overall accuracy (87.8%) in all classification schemes; (3) The optimized object-based LightGBM algorithm outperformed XGBoost and RF algorithm, which provided an improvement of 0.6%∼3.5% in overall accuracy (OA). McNemar's test indicated that there existed significant differences in vegetation communities’ classification between the three algorithms. (4) The average accuracy (AA) of vegetation communities in karst wetlands was mainly ranged from 60% to 90%. The water hyacinth and herbaceous vegetation were sensitive to the Mean Digital Surface Model (DSM) and Standard RedEdge band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浆果肉丸应助liu采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
Kyo应助科研通管家采纳,获得10
刚刚
刚刚
cctv18应助执着以山采纳,获得10
刚刚
刚刚
1秒前
英俊的铭应助要减肥冰菱采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
9527完成签到,获得积分10
2秒前
2秒前
2秒前
C17发布了新的文献求助10
3秒前
9527发布了新的文献求助10
4秒前
4秒前
刻苦的鸭子完成签到 ,获得积分10
4秒前
5秒前
6秒前
MsEEi发布了新的文献求助10
8秒前
Pauline完成签到 ,获得积分10
9秒前
柳代云完成签到,获得积分10
9秒前
毛豆应助斯文泥猴桃采纳,获得10
10秒前
12秒前
Jim luo发布了新的文献求助10
13秒前
深情安青应助花佩剑采纳,获得10
14秒前
Sammy完成签到,获得积分10
15秒前
懒咩咩完成签到,获得积分10
16秒前
元气蛋完成签到,获得积分10
17秒前
17秒前
腼腆的烤鸡完成签到,获得积分10
18秒前
橘子完成签到,获得积分10
19秒前
香蕉觅云应助C17采纳,获得10
20秒前
20秒前
穆紫应助hkh采纳,获得10
20秒前
酷波er应助hkh采纳,获得10
20秒前
深情安青应助hkh采纳,获得10
20秒前
充电宝应助hkh采纳,获得10
20秒前
薰硝壤应助凤凰之玉采纳,获得30
21秒前
研友_VZG7GZ应助chen采纳,获得10
24秒前
高分求助中
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
PROJECT STUDIES; -A LATE MODERN UNIVERSITY REFORM? 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057772
求助须知:如何正确求助?哪些是违规求助? 2714072
关于积分的说明 7439066
捐赠科研通 2359232
什么是DOI,文献DOI怎么找? 1249940
科研通“疑难数据库(出版商)”最低求助积分说明 607315
版权声明 596334