数学
伯格曼核
有界函数
订单(交换)
组合数学
对角线的
核(代数)
边界(拓扑)
拉普拉斯算子
公制(单位)
投影(关系代数)
数学分析
纯数学
几何学
经济
运营管理
算法
财务
作者
Bo-Yong Chen,Liyou Zhang
标识
DOI:10.1016/j.aim.2022.108516
摘要
In this paper we attempt to develop a general $p-$Bergman theory on bounded domains in $\mathbb C^n$. To indicate the basic difference between $L^p$ and $L^2$ cases, we show that the $p-$Bergman kernel $K_p(z)$ is not real-analytic on some bounded complete Reinhardt domains when $p\ge 4$ is an even number. By the calculus of variations we get a fundamental reproducing formula. This together with certain techniques from nonlinear analysis of the $p-$Laplacian yield a number of results, e.g., the off-diagonal $p-$Bergman kernel $K_p(z,\cdot)$ is H\"older continuous of order $\frac12$ for $p>1$ and of order $\frac1{2(n+2)}$ for $p=1$. We also show that the $p-$Bergman metric $B_p(z;X)$ tends to the Carath\'eodory metric $C(z;X)$ as $p\rightarrow \infty$ and the generalized Levi form $i\partial\bar{\partial}\log K_p(z;X)$ is no less than $B_p(z;X)^2$ for $p\ge 2$ and $ C(z;X)^2$ for $p\le 2.$ Stability of $K_p(z,w)$ or $B_p(z;X)$ as $p$ varies, boundary behavior of $K_p(z)$, as well as basic facts on the $p-$Bergman prjection, are also investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI