Multi-aspect size effect transition from micro to macroscale: Modelling and experiment

材料科学 缩颈 微尺度化学 微晶 流动应力 可塑性 复合材料 晶界 粒度 晶体孪晶 有限元法 冶金 应变率 结构工程 微观结构 工程类 数学教育 数学
作者
Zhenyong Feng,H. Li,D. Zhang,Xianzhong Guo,Yuqiang Chen,M.W. Fu
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:156: 103364-103364 被引量:23
标识
DOI:10.1016/j.ijplas.2022.103364
摘要

Size effects (SEs) impede the mass production of high-performance miniaturised components via micro-forming. Although many studies have examined SEs from multiple aspects, such as flow stress, deformation, and ductile fracture, the SE transitions characterised by the significant changes of these phenomena across the micro- and macroscale remain ambiguous. These SE transitions must be fully and deeply explored to enable the transformation of microscale deformations to macroscale ones by the design of products with appropriate dimensions, grain sizes and loading boundaries. This study involved experimental and numerical studies of multi-aspect SE transitions in flow stress, heterogeneous deformation (surface roughening and strain localisation) and ductile fracture at the micro- and macroscale in copper (Cu) sheets, which are widely used in electronic industries. The Cu sheets for tensile tests were designed and fabricated to be with a thickness (t) of 0.05–1.50 mm, a grain size (d) of 3–260 μm and t/d of 0.63–65.30. The crystal plasticity finite element model (CPFEM) and the Voronoi-based polycrystalline geometric model (VPGM) with t/d of 1–30 were established. Compared with the phenomenological work hardening model (PM), the dislocation density-based model (DDBM) can better predict the multi-aspect behaviours within the scope of above-mentioned scales. An obvious SE transition point (λ) was observed: when t/d < λ, there is a sharp decrease in materials strength and necking strain, an increase in surface roughness and a transformation of fracture mode, as well as a remarkable scattering of the aforementioned responses. The SE transition points vary from t/d = 3 to 11 for different responses, and generally the stress-related λ is smaller than the strain-related one. The larger the t/d, the closer the stress and strain distributions are to the normal distribution. The distribution irregularity of grain-scale stress to the change of t/d is more sensitive than that of strain. Different distributions in grain orientations are the primary inducers of this scattering of responses when t/d < λ. Grain-scale deformation heterogeneity and scattering could be decreased through controlling scale factor t/d > λ, thereby entering the macroscale deformation domain. Case studies of micro-pin extrusion and thin-walled tube-drawing confirmed that setting t/d > λ or using a boundary constraint could alleviate the negative influences of SEs, thus enabling a more uniform deformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LZR完成签到,获得积分10
刚刚
刚刚
刚刚
SYSUer发布了新的文献求助10
刚刚
风信子完成签到,获得积分10
1秒前
lalali发布了新的文献求助30
2秒前
不爱吃banana的猴子完成签到,获得积分10
3秒前
海派甜心发布了新的文献求助10
3秒前
4秒前
大龙哥886应助陈辰晨采纳,获得10
5秒前
Windln发布了新的文献求助10
5秒前
5秒前
6秒前
嘀嘀哒哒完成签到,获得积分10
8秒前
8秒前
杨王发布了新的文献求助10
9秒前
白露完成签到 ,获得积分10
9秒前
9秒前
所所应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
10秒前
成就凡双应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
成就凡双应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
hyw发布了新的文献求助10
13秒前
超级的觅松完成签到,获得积分20
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177