Multi-aspect size effect transition from micro to macroscale: Modelling and experiment

材料科学 缩颈 微尺度化学 微晶 流动应力 可塑性 复合材料 晶界 粒度 晶体孪晶 有限元法 冶金 应变率 结构工程 微观结构 工程类 数学教育 数学
作者
Zhenyong Feng,H. Li,D. Zhang,Xianzhong Guo,Yuqiang Chen,M.W. Fu
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:156: 103364-103364 被引量:23
标识
DOI:10.1016/j.ijplas.2022.103364
摘要

Size effects (SEs) impede the mass production of high-performance miniaturised components via micro-forming. Although many studies have examined SEs from multiple aspects, such as flow stress, deformation, and ductile fracture, the SE transitions characterised by the significant changes of these phenomena across the micro- and macroscale remain ambiguous. These SE transitions must be fully and deeply explored to enable the transformation of microscale deformations to macroscale ones by the design of products with appropriate dimensions, grain sizes and loading boundaries. This study involved experimental and numerical studies of multi-aspect SE transitions in flow stress, heterogeneous deformation (surface roughening and strain localisation) and ductile fracture at the micro- and macroscale in copper (Cu) sheets, which are widely used in electronic industries. The Cu sheets for tensile tests were designed and fabricated to be with a thickness (t) of 0.05–1.50 mm, a grain size (d) of 3–260 μm and t/d of 0.63–65.30. The crystal plasticity finite element model (CPFEM) and the Voronoi-based polycrystalline geometric model (VPGM) with t/d of 1–30 were established. Compared with the phenomenological work hardening model (PM), the dislocation density-based model (DDBM) can better predict the multi-aspect behaviours within the scope of above-mentioned scales. An obvious SE transition point (λ) was observed: when t/d < λ, there is a sharp decrease in materials strength and necking strain, an increase in surface roughness and a transformation of fracture mode, as well as a remarkable scattering of the aforementioned responses. The SE transition points vary from t/d = 3 to 11 for different responses, and generally the stress-related λ is smaller than the strain-related one. The larger the t/d, the closer the stress and strain distributions are to the normal distribution. The distribution irregularity of grain-scale stress to the change of t/d is more sensitive than that of strain. Different distributions in grain orientations are the primary inducers of this scattering of responses when t/d < λ. Grain-scale deformation heterogeneity and scattering could be decreased through controlling scale factor t/d > λ, thereby entering the macroscale deformation domain. Case studies of micro-pin extrusion and thin-walled tube-drawing confirmed that setting t/d > λ or using a boundary constraint could alleviate the negative influences of SEs, thus enabling a more uniform deformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青葙完成签到,获得积分10
1秒前
一颗蓝莓完成签到 ,获得积分10
1秒前
阳光的凌雪完成签到 ,获得积分10
1秒前
fanyuhong完成签到 ,获得积分10
2秒前
辛勤夜柳发布了新的文献求助10
4秒前
4秒前
memedaaaah完成签到,获得积分10
5秒前
大河细流完成签到,获得积分10
6秒前
传奇3应助tian采纳,获得30
6秒前
还活着发布了新的文献求助10
7秒前
zzzzz完成签到,获得积分10
7秒前
10秒前
12秒前
爱听歌的丹琴完成签到,获得积分10
12秒前
15秒前
喜悦的依琴完成签到,获得积分10
16秒前
枫枫829完成签到,获得积分10
16秒前
泽2011发布了新的文献求助30
17秒前
iu完成签到,获得积分10
19秒前
希望天下0贩的0应助aaa采纳,获得10
20秒前
水镜完成签到,获得积分10
20秒前
tian发布了新的文献求助30
21秒前
21秒前
21秒前
天天快乐应助敬鱼采纳,获得10
24秒前
NexusExplorer应助枫枫829采纳,获得10
25秒前
25秒前
26秒前
26秒前
Metbutterly完成签到,获得积分10
27秒前
NUS完成签到,获得积分10
27秒前
27秒前
开花完成签到,获得积分10
27秒前
hymmm完成签到,获得积分10
28秒前
28秒前
会盟完成签到 ,获得积分10
29秒前
0231完成签到,获得积分10
29秒前
Metbutterly发布了新的文献求助10
29秒前
cx2683693878发布了新的文献求助10
29秒前
小七完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814