Multi-aspect size effect transition from micro to macroscale: Modelling and experiment

材料科学 缩颈 微尺度化学 微晶 流动应力 可塑性 复合材料 晶界 粒度 晶体孪晶 有限元法 冶金 应变率 结构工程 微观结构 工程类 数学教育 数学
作者
Zhenyong Feng,H. Li,D. Zhang,Xianzhong Guo,Yuqiang Chen,M.W. Fu
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:156: 103364-103364 被引量:23
标识
DOI:10.1016/j.ijplas.2022.103364
摘要

Size effects (SEs) impede the mass production of high-performance miniaturised components via micro-forming. Although many studies have examined SEs from multiple aspects, such as flow stress, deformation, and ductile fracture, the SE transitions characterised by the significant changes of these phenomena across the micro- and macroscale remain ambiguous. These SE transitions must be fully and deeply explored to enable the transformation of microscale deformations to macroscale ones by the design of products with appropriate dimensions, grain sizes and loading boundaries. This study involved experimental and numerical studies of multi-aspect SE transitions in flow stress, heterogeneous deformation (surface roughening and strain localisation) and ductile fracture at the micro- and macroscale in copper (Cu) sheets, which are widely used in electronic industries. The Cu sheets for tensile tests were designed and fabricated to be with a thickness (t) of 0.05–1.50 mm, a grain size (d) of 3–260 μm and t/d of 0.63–65.30. The crystal plasticity finite element model (CPFEM) and the Voronoi-based polycrystalline geometric model (VPGM) with t/d of 1–30 were established. Compared with the phenomenological work hardening model (PM), the dislocation density-based model (DDBM) can better predict the multi-aspect behaviours within the scope of above-mentioned scales. An obvious SE transition point (λ) was observed: when t/d < λ, there is a sharp decrease in materials strength and necking strain, an increase in surface roughness and a transformation of fracture mode, as well as a remarkable scattering of the aforementioned responses. The SE transition points vary from t/d = 3 to 11 for different responses, and generally the stress-related λ is smaller than the strain-related one. The larger the t/d, the closer the stress and strain distributions are to the normal distribution. The distribution irregularity of grain-scale stress to the change of t/d is more sensitive than that of strain. Different distributions in grain orientations are the primary inducers of this scattering of responses when t/d < λ. Grain-scale deformation heterogeneity and scattering could be decreased through controlling scale factor t/d > λ, thereby entering the macroscale deformation domain. Case studies of micro-pin extrusion and thin-walled tube-drawing confirmed that setting t/d > λ or using a boundary constraint could alleviate the negative influences of SEs, thus enabling a more uniform deformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼懿轩完成签到,获得积分20
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
jc哥发布了新的文献求助10
3秒前
3秒前
甜甜沛蓝完成签到,获得积分10
4秒前
鲤鱼懿轩发布了新的文献求助20
4秒前
Phil完成签到 ,获得积分10
5秒前
Owen应助澡雪采纳,获得10
6秒前
脑洞疼应助钙离子采纳,获得10
7秒前
哈哈哈发布了新的文献求助10
8秒前
无糖气泡水完成签到,获得积分10
8秒前
8秒前
xiaohong发布了新的文献求助10
8秒前
甜甜沛蓝发布了新的文献求助10
8秒前
Jasper应助会撒娇的芷烟采纳,获得10
9秒前
乐乐应助神外第一刀采纳,获得10
9秒前
9秒前
我是老大应助庾稀采纳,获得10
10秒前
琪哒完成签到,获得积分10
11秒前
11秒前
明理的青寒完成签到 ,获得积分10
12秒前
1111应助大白采纳,获得20
12秒前
14秒前
sciN发布了新的文献求助10
17秒前
18秒前
赘婿应助啦啦啦采纳,获得10
18秒前
19秒前
初识完成签到,获得积分10
21秒前
拼搏宝莹发布了新的文献求助10
22秒前
面壁思过应助Wonder采纳,获得10
22秒前
22秒前
Lily应助高挑的幻翠采纳,获得10
23秒前
孟醒发布了新的文献求助10
24秒前
24秒前
lllyf发布了新的文献求助10
26秒前
27秒前
27秒前
Lucas应助勤劳的音响采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426