Multi-aspect size effect transition from micro to macroscale: Modelling and experiment

材料科学 缩颈 微尺度化学 微晶 流动应力 可塑性 复合材料 晶界 粒度 晶体孪晶 有限元法 冶金 应变率 结构工程 微观结构 工程类 数学教育 数学
作者
Zhenyong Feng,H. Li,D. Zhang,Xianzhong Guo,Yuqiang Chen,M.W. Fu
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:156: 103364-103364 被引量:23
标识
DOI:10.1016/j.ijplas.2022.103364
摘要

Size effects (SEs) impede the mass production of high-performance miniaturised components via micro-forming. Although many studies have examined SEs from multiple aspects, such as flow stress, deformation, and ductile fracture, the SE transitions characterised by the significant changes of these phenomena across the micro- and macroscale remain ambiguous. These SE transitions must be fully and deeply explored to enable the transformation of microscale deformations to macroscale ones by the design of products with appropriate dimensions, grain sizes and loading boundaries. This study involved experimental and numerical studies of multi-aspect SE transitions in flow stress, heterogeneous deformation (surface roughening and strain localisation) and ductile fracture at the micro- and macroscale in copper (Cu) sheets, which are widely used in electronic industries. The Cu sheets for tensile tests were designed and fabricated to be with a thickness (t) of 0.05–1.50 mm, a grain size (d) of 3–260 μm and t/d of 0.63–65.30. The crystal plasticity finite element model (CPFEM) and the Voronoi-based polycrystalline geometric model (VPGM) with t/d of 1–30 were established. Compared with the phenomenological work hardening model (PM), the dislocation density-based model (DDBM) can better predict the multi-aspect behaviours within the scope of above-mentioned scales. An obvious SE transition point (λ) was observed: when t/d < λ, there is a sharp decrease in materials strength and necking strain, an increase in surface roughness and a transformation of fracture mode, as well as a remarkable scattering of the aforementioned responses. The SE transition points vary from t/d = 3 to 11 for different responses, and generally the stress-related λ is smaller than the strain-related one. The larger the t/d, the closer the stress and strain distributions are to the normal distribution. The distribution irregularity of grain-scale stress to the change of t/d is more sensitive than that of strain. Different distributions in grain orientations are the primary inducers of this scattering of responses when t/d < λ. Grain-scale deformation heterogeneity and scattering could be decreased through controlling scale factor t/d > λ, thereby entering the macroscale deformation domain. Case studies of micro-pin extrusion and thin-walled tube-drawing confirmed that setting t/d > λ or using a boundary constraint could alleviate the negative influences of SEs, thus enabling a more uniform deformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
htbian发布了新的文献求助10
1秒前
hql_sdu完成签到,获得积分10
2秒前
shinn发布了新的文献求助100
3秒前
小马完成签到,获得积分10
3秒前
5秒前
爱芮芮完成签到,获得积分10
6秒前
领导范儿应助xyyt采纳,获得10
6秒前
9秒前
陈锦鲤完成签到 ,获得积分10
9秒前
太叔夜南发布了新的文献求助10
9秒前
11秒前
Lucas应助科研牛马徐某人采纳,获得30
12秒前
椰椰发布了新的文献求助10
13秒前
gstaihn发布了新的文献求助10
13秒前
shinn发布了新的文献求助10
13秒前
13秒前
高兴的台灯关注了科研通微信公众号
15秒前
Lucas应助lulu采纳,获得10
16秒前
18秒前
gstaihn完成签到,获得积分10
19秒前
Yyuan发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
21秒前
22秒前
失眠芷蝶发布了新的文献求助10
23秒前
乐乐应助椰椰采纳,获得10
24秒前
24秒前
24秒前
许诺发布了新的文献求助10
25秒前
选课发布了新的文献求助10
26秒前
Bilipear发布了新的文献求助10
26秒前
水1111发布了新的文献求助10
27秒前
LYNB完成签到 ,获得积分10
27秒前
yjxx完成签到,获得积分10
27秒前
可研发布了新的文献求助30
28秒前
28秒前
28秒前
lulu发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679656
求助须知:如何正确求助?哪些是违规求助? 4992557
关于积分的说明 15170404
捐赠科研通 4839503
什么是DOI,文献DOI怎么找? 2593348
邀请新用户注册赠送积分活动 1546505
关于科研通互助平台的介绍 1504594