亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review

系统回顾 儿科研究 医学 梅德林 重症监护医学 儿科 生物 生物化学
作者
Stephanie Baker,Yogavijayan Kandasamy
出处
期刊:Pediatric Research [Springer Nature]
卷期号:93 (2): 293-299 被引量:10
标识
DOI:10.1038/s41390-022-02120-w
摘要

Abstract Background Machine learning has been attracting increasing attention for use in healthcare applications, including neonatal medicine. One application for this tool is in understanding and predicting neurodevelopmental outcomes in preterm infants. In this study, we have carried out a systematic review to identify findings and challenges to date. Methods This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Four databases were searched in February 2022, with articles then screened in a non-blinded manner by two authors. Results The literature search returned 278 studies, with 11 meeting the eligibility criteria for inclusion. Convolutional neural networks were the most common machine learning approach, with most studies seeking to predict neurodevelopmental outcomes from images and connectomes describing brain structure and function. Studies to date also sought to identify features predictive of outcomes; however, results varied greatly. Conclusions Initial studies in this field have achieved promising results; however, many machine learning techniques remain to be explored, and the consensus is yet to be reached on which clinical and brain features are most predictive of neurodevelopmental outcomes. Impact This systematic review looks at the question of whether machine learning can be used to predict and understand neurodevelopmental outcomes in preterm infants. Our review finds that promising initial works have been conducted in this field, but many challenges and opportunities remain. Quality assessment of relevant articles is conducted using the Newcastle–Ottawa Scale. This work identifies challenges that remain and suggests several key directions for future research. To the best of the authors’ knowledge, this is the first systematic review to explore this topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
可爱的函函应助安有才采纳,获得10
19秒前
听闻墨笙完成签到 ,获得积分10
46秒前
安有才完成签到,获得积分10
52秒前
53秒前
56秒前
nagisa发布了新的文献求助10
57秒前
YXH发布了新的文献求助10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Lucas应助YXH采纳,获得10
1分钟前
1分钟前
闪闪寒荷完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
jixieshiren发布了新的文献求助10
2分钟前
小吴同学发布了新的文献求助10
2分钟前
00暮霭沉沉00完成签到,获得积分10
2分钟前
linjiaxin完成签到,获得积分10
2分钟前
LLL应助小吴同学采纳,获得10
2分钟前
2分钟前
滴滴发布了新的文献求助10
2分钟前
monica发布了新的文献求助10
2分钟前
3分钟前
冯大哥完成签到,获得积分10
3分钟前
3分钟前
力行发布了新的文献求助10
3分钟前
3分钟前
力行发布了新的文献求助20
4分钟前
4分钟前
健忘沛春完成签到 ,获得积分10
4分钟前
科研通AI2S应助彩色德天采纳,获得10
4分钟前
monica发布了新的文献求助10
4分钟前
奔波霸完成签到 ,获得积分10
4分钟前
Hayat应助力行采纳,获得10
4分钟前
Polymer72应助xxyqddx采纳,获得10
4分钟前
HR112完成签到 ,获得积分10
4分钟前
饱满涵蕾发布了新的文献求助10
4分钟前
隐形曼青应助桀骜采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978095
关于积分的说明 8683663
捐赠科研通 2659409
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016