Deep learning-based ensemble model for classification of photovoltaic module visual faults

计算机科学 人工智能 深度学习 停工期 卷积神经网络 断层(地质) 光伏系统 人工神经网络 集合预报 鉴定(生物学) 模式识别(心理学) 实时计算 工程类 生物 操作系统 电气工程 地质学 地震学 植物
作者
Naveen Venkatesh Sridharan,V. Sugumaran
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Taylor & Francis]
卷期号:44 (2): 5287-5302 被引量:9
标识
DOI:10.1080/15567036.2022.2083729
摘要

Fault occurrences in photovoltaic (PV) modules can hinder the performance of the system, resulting in reduced lifetime and performance of the modules. PV module (PVM) faults if unmonitored can affect the power transmission through the system, thereby creating short circuits that can be hazardous. Unmanned aerial vehicle (UAV)-based monitoring is one of the most common and widely adopted techniques to detect faults in PVM. Visual images of PVM contain the necessary information about the faults, but sometimes, it becomes difficult even for expert professional to work on large amount of image data. Automatic classification of PVM faults using deep learning techniques can help in providing improved analysis and instantaneous results. The present study adopts renowned deep convolution neural network (CNN) models such as MobileNet V2, Inception V3, and Xception for the classification of PVM. The aforementioned models were trained individually, and the classification performances of the models were observed to be 97.03%, 95.55%, and 92.27%, respectively. A hybrid deep ensemble model is proposed in the study that merges all the aforementioned models. The proposed model produced classification accuracy higher than each of the individual model with a value of 99.04%. Automatic classification using deep ensemble model can help in the accurate identification of faults in PVM from images acquired through UAV. Consequently, this computer-aided and quick diagnosis can eliminate the downtime and fire hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助youlingduxiu采纳,获得10
1秒前
狂野书易发布了新的文献求助30
1秒前
ikkk完成签到,获得积分20
1秒前
2秒前
WenTang完成签到,获得积分10
2秒前
3秒前
可爱的函函应助墨雨行采纳,获得10
3秒前
4秒前
打打应助米娅采纳,获得10
4秒前
贪玩发夹发布了新的文献求助10
4秒前
5秒前
LingYi发布了新的文献求助10
6秒前
6秒前
wwqc完成签到,获得积分0
6秒前
bobochicken完成签到,获得积分10
6秒前
6秒前
6秒前
陈宇蛟完成签到,获得积分20
7秒前
7秒前
高挑的迎夏完成签到,获得积分20
7秒前
刚好夏天完成签到 ,获得积分10
7秒前
7秒前
六六大顺发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
蓝色斑马完成签到,获得积分10
9秒前
沉静白卉完成签到,获得积分20
9秒前
9秒前
ken发布了新的文献求助10
10秒前
无情的水蓉完成签到,获得积分10
10秒前
11秒前
Zjf发布了新的文献求助10
11秒前
11秒前
科研牛马关注了科研通微信公众号
11秒前
12秒前
ED应助贪玩发夹采纳,获得10
12秒前
12秒前
yy发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139