旋转副
膝关节
机制(生物学)
外骨骼
接头(建筑物)
运动学
模拟
还原(数学)
工程类
计算机科学
机器人
结构工程
人工智能
医学
物理
数学
外科
几何学
经典力学
量子力学
作者
Taeyeon Kim,Mingoo Jeong,Kyoungchul Kong
出处
期刊:IEEE-ASME Transactions on Mechatronics
[Institute of Electrical and Electronics Engineers]
日期:2021-07-26
卷期号:27 (3): 1223-1232
被引量:26
标识
DOI:10.1109/tmech.2021.3099815
摘要
Misalignment between an exoskeletal robot and the wearer’s body must be minimal to prevent injury and discomfort during active assistance. It is particularly difficult for the robot to imitate the knee joint motion of a human because the human knee joint has a complex structure, which cannot be realized with a single revolute joint. In this article, a knee joint mechanism that closely realizes the human knee joint motion using the curved guide rail and bearings is proposed. For the optimal design of the proposed mechanism, the motions of the tibia and the femur are captured, and the guide rail of the proposed mechanism is designed to realize the captured human knee joint motion. A simulation study is performed based on kinematic calculations, and the shape of the guide rail is optimized for the proposed device to precisely imitate the human motion. This article also introduces an experimental method for the quantitative evaluation of the misalignment; the pressure inside the brace is measured using an air-pressure sensor pad, and the pressure measurements are utilized for objective comparison of the misalignment with respect to the joint mechanism. An additional experiment is performed to verify the noninterfering of the human walking motion.
科研通智能强力驱动
Strongly Powered by AbleSci AI