间充质干细胞
椎间盘
移植
干细胞
再生(生物学)
病理
骨髓
解剖
医学
化学
细胞生物学
外科
生物
作者
Gianluca Vadalà,Gwendolyn Sowa,Mark Hubert,Lars G. Gilbertson,Vincenzo Denaro,James D. Kang
摘要
Recent studies have shown that mesenchymal stem cell (MSC)-based therapy might be an effective approach for the treatment of intervertebral disc degeneration (IDD). However, many unanswered questions remain before clinical translation, such as the most effective stem cell type, a reliable transplantation method, including the carrier choice, and the fate of stem cells after misdirected delivery, among others. The objective of the study was to evaluate the fate and effect of allogenic bone marrow MSCs after transplantation into an IDD model. The L2–3, L3–4 and L4–5 intervertebral discs (IVDs) of four rabbits were stabbed to create IDD. Rabbit MSCs were expanded in vitro and in part transduced with retrovirus/eGFP. After 3 weeks, 1 × 105 MSCs were injected into the IVDs. The rabbits were followed by X-ray and MRI 3 and 9 weeks after injection. Then the animals were sacrificed and the spines analysed histologically. MRI showed no signs of regeneration. X-ray and gross anatomy inspection demonstrated large anterolateral osteophytes. Histological analysis showed that the osteophytes were composed of mineralized tissue surrounded by chondrocytes, with the labelled MSCs among the osteophyte-forming cells. The labelled MSCs were not found in the nucleus. Inflammatory cells were not observed in any injected IVDs. These results raise concern that MSCs can migrate out of the nucleus and undesirable bone formation may occur. While cause cannot be inferred from this study, the presence of MSCs in the osteophytes suggests a potential side-effect with this approach. IVD regeneration strategies need to focus on cell carrier systems and annulus-sealing technologies to avoid pitfalls. Copyright © 2011 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI