Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach

微测辐射热计 计算机科学 人工智能 固定模式噪声 探测器 卷积神经网络 深度学习 噪音(视频) 栏(排版) 光学 工件(错误) 红外线的 计算机视觉 图像传感器 图像(数学) 物理 热辐射计 电信 帧(网络)
作者
Zewei He,Yanan Cao,Yafei Dong,Jiangxin Yang,Christel-Loïc Tisse
出处
期刊:Applied Optics [The Optical Society]
卷期号:57 (18): D155-D155 被引量:65
标识
DOI:10.1364/ao.57.00d155
摘要

Fixed-pattern noise (FPN), which is caused by the nonuniform opto-electronic responses of microbolometer focal-plane-array (FPA) optoelectronics, imposes a challenging problem in infrared imaging systems. In this paper, we successfully demonstrate that a better single-image-based non-uniformity correction (NUC) operator can be directly learned from a large number of simulated training images instead of being handcrafted as before. Our proposed training scheme, which is based on convolutional neural networks (CNNs) and a column FPN simulation module, gives rise to a powerful technique to reconstruct the noise-free infrared image from its corresponding noisy observation. Specifically, a comprehensive column FPN model is utilized to depict the nonlinear characteristics of column amplifiers in the readout circuit of FPA. A large number of high-fidelity training images are simulated based on this model and the end-to-end residual deep network is capable of learning the intrinsic difference between undesirable FPN and original image details. Therefore, column FPN can be accurately estimated and further subtracted from the raw infrared images to obtain NUC results. Comparative results with state-of-the-art single-image-based NUC methods, using real-captured noisy infrared images, demonstrate that our proposed deep-learning-based approach delivers better performances of FPN removal, detail preservation, and artifact suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分10
刚刚
刚刚
小只bb完成签到,获得积分20
1秒前
wwww发布了新的文献求助10
1秒前
2秒前
ABC完成签到,获得积分20
3秒前
高高的梦曼完成签到,获得积分10
3秒前
zt发布了新的文献求助10
3秒前
Amon完成签到,获得积分20
4秒前
6秒前
6秒前
欣慰的无颜完成签到,获得积分10
6秒前
6秒前
嘀嘀哒哒发布了新的文献求助10
6秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得30
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
李李李李应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
qiiq1997完成签到,获得积分10
8秒前
吴彦祖完成签到,获得积分10
8秒前
8秒前
GHOST完成签到,获得积分10
9秒前
mimi发布了新的文献求助10
11秒前
zt完成签到,获得积分10
11秒前
救驾来迟完成签到,获得积分10
12秒前
科研靓仔发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023