Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach

微测辐射热计 计算机科学 人工智能 固定模式噪声 探测器 卷积神经网络 深度学习 噪音(视频) 栏(排版) 光学 工件(错误) 红外线的 计算机视觉 图像传感器 图像(数学) 物理 热辐射计 电信 帧(网络)
作者
Zewei He,Yanpeng Cao,Yafei Dong,Jiangxin Yang,Yanlong Cao,Christel-Loïc Tisse
出处
期刊:Applied Optics [The Optical Society]
卷期号:57 (18): D155-D155 被引量:107
标识
DOI:10.1364/ao.57.00d155
摘要

Fixed-pattern noise (FPN), which is caused by the nonuniform opto-electronic responses of microbolometer focal-plane-array (FPA) optoelectronics, imposes a challenging problem in infrared imaging systems. In this paper, we successfully demonstrate that a better single-image-based non-uniformity correction (NUC) operator can be directly learned from a large number of simulated training images instead of being handcrafted as before. Our proposed training scheme, which is based on convolutional neural networks (CNNs) and a column FPN simulation module, gives rise to a powerful technique to reconstruct the noise-free infrared image from its corresponding noisy observation. Specifically, a comprehensive column FPN model is utilized to depict the nonlinear characteristics of column amplifiers in the readout circuit of FPA. A large number of high-fidelity training images are simulated based on this model and the end-to-end residual deep network is capable of learning the intrinsic difference between undesirable FPN and original image details. Therefore, column FPN can be accurately estimated and further subtracted from the raw infrared images to obtain NUC results. Comparative results with state-of-the-art single-image-based NUC methods, using real-captured noisy infrared images, demonstrate that our proposed deep-learning-based approach delivers better performances of FPN removal, detail preservation, and artifact suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱子完成签到,获得积分10
1秒前
YCH_mem发布了新的文献求助30
1秒前
山间风完成签到,获得积分10
1秒前
刘春霖完成签到 ,获得积分10
2秒前
daixan89完成签到 ,获得积分10
3秒前
3秒前
寯齆完成签到,获得积分10
3秒前
innovation266完成签到,获得积分10
3秒前
4秒前
嗨喽完成签到,获得积分10
4秒前
活泼蜡烛完成签到,获得积分10
4秒前
叶落孤城完成签到,获得积分10
4秒前
woshiwuziq完成签到 ,获得积分10
4秒前
沐沐汐完成签到 ,获得积分10
5秒前
Akim应助文献狂人采纳,获得10
5秒前
YeMa发布了新的文献求助10
6秒前
shea发布了新的文献求助10
6秒前
自觉一曲发布了新的文献求助10
7秒前
7秒前
慕青应助lling采纳,获得10
7秒前
foxbt完成签到,获得积分10
7秒前
8秒前
夏秀鑫完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
奋斗的大白菜完成签到,获得积分10
9秒前
熊儒恒完成签到,获得积分10
9秒前
9秒前
白江虎发布了新的文献求助10
10秒前
笑点低的凉面完成签到,获得积分10
10秒前
Huzhu应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
多边形完成签到 ,获得积分10
11秒前
头哥应助科研通管家采纳,获得10
11秒前
11秒前
Rookie应助科研通管家采纳,获得10
11秒前
Wefaily应助科研通管家采纳,获得50
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883