Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: a deep-learning approach

微测辐射热计 计算机科学 人工智能 固定模式噪声 探测器 卷积神经网络 深度学习 噪音(视频) 栏(排版) 光学 工件(错误) 红外线的 计算机视觉 图像传感器 图像(数学) 物理 热辐射计 电信 帧(网络)
作者
Zewei He,Yanpeng Cao,Yafei Dong,Jiangxin Yang,Yanlong Cao,Christel-Loïc Tisse
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:57 (18): D155-D155 被引量:107
标识
DOI:10.1364/ao.57.00d155
摘要

Fixed-pattern noise (FPN), which is caused by the nonuniform opto-electronic responses of microbolometer focal-plane-array (FPA) optoelectronics, imposes a challenging problem in infrared imaging systems. In this paper, we successfully demonstrate that a better single-image-based non-uniformity correction (NUC) operator can be directly learned from a large number of simulated training images instead of being handcrafted as before. Our proposed training scheme, which is based on convolutional neural networks (CNNs) and a column FPN simulation module, gives rise to a powerful technique to reconstruct the noise-free infrared image from its corresponding noisy observation. Specifically, a comprehensive column FPN model is utilized to depict the nonlinear characteristics of column amplifiers in the readout circuit of FPA. A large number of high-fidelity training images are simulated based on this model and the end-to-end residual deep network is capable of learning the intrinsic difference between undesirable FPN and original image details. Therefore, column FPN can be accurately estimated and further subtracted from the raw infrared images to obtain NUC results. Comparative results with state-of-the-art single-image-based NUC methods, using real-captured noisy infrared images, demonstrate that our proposed deep-learning-based approach delivers better performances of FPN removal, detail preservation, and artifact suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助不会取名字采纳,获得10
1秒前
米米应助白白采纳,获得30
1秒前
HAHAHA完成签到,获得积分10
1秒前
狐妖发布了新的文献求助10
2秒前
4秒前
情怀应助Wiz111采纳,获得10
4秒前
5秒前
饶天源发布了新的文献求助10
5秒前
刘博虎完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
zzq完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
小马甲应助小白采纳,获得10
7秒前
8秒前
8秒前
英姑应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
GPTea应助科研通管家采纳,获得150
9秒前
GPTea应助科研通管家采纳,获得50
9秒前
科研通AI6应助科研通管家采纳,获得150
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
是我发布了新的文献求助30
10秒前
张贵虎发布了新的文献求助10
10秒前
SciGPT应助乾雨采纳,获得10
10秒前
高大莺发布了新的文献求助10
11秒前
吴倩完成签到 ,获得积分10
12秒前
myp完成签到,获得积分10
12秒前
12秒前
乐观丸子发布了新的文献求助10
13秒前
Miya发布了新的文献求助10
13秒前
狐妖完成签到,获得积分10
13秒前
外向渊思完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062344
求助须知:如何正确求助?哪些是违规求助? 4286094
关于积分的说明 13356468
捐赠科研通 4103977
什么是DOI,文献DOI怎么找? 2247194
邀请新用户注册赠送积分活动 1252812
关于科研通互助平台的介绍 1183746