SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound

超声波 计算机视觉 三维超声 计算机科学 人工智能 放射科 医学 核医学
作者
Christian F. Baumgartner,Konstantinos Kamnitsas,Jacqueline Matthew,Tara P. Fletcher,Sandra Smith,Lisa M. Koch,Bernhard Kainz,Daniel Rueckert
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 2204-2215 被引量:332
标识
DOI:10.1109/tmi.2017.2712367
摘要

Identifying and interpreting fetal standard scan planes during 2-D ultrasound mid-pregnancy examinations are highly complex tasks, which require years of training. Apart from guiding the probe to the correct location, it can be equally difficult for a non-expert to identify relevant structures within the image. Automatic image processing can provide tools to help experienced as well as inexperienced operators with these tasks. In this paper, we propose a novel method based on convolutional neural networks, which can automatically detect 13 fetal standard views in freehand 2-D ultrasound data as well as provide a localization of the fetal structures via a bounding box. An important contribution is that the network learns to localize the target anatomy using weak supervision based on image-level labels only. The network architecture is designed to operate in real-time while providing optimal output for the localization task. We present results for real-time annotation, retrospective frame retrieval from saved videos, and localization on a very large and challenging dataset consisting of images and video recordings of full clinical anomaly screenings. We found that the proposed method achieved an average F1-score of 0.798 in a realistic classification experiment modeling real-time detection, and obtained a 90.09% accuracy for retrospective frame retrieval. Moreover, an accuracy of 77.8% was achieved on the localization task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助冷傲老头采纳,获得20
2秒前
3秒前
长长的名字完成签到 ,获得积分10
7秒前
斯文败类应助jila采纳,获得10
8秒前
11秒前
Hello应助嘿嘿采纳,获得10
12秒前
可可可可汁完成签到 ,获得积分10
15秒前
无奈的尔容完成签到,获得积分10
17秒前
Xiaohu完成签到,获得积分10
18秒前
XIEQ发布了新的文献求助10
19秒前
19秒前
科研通AI6应助yyanxuemin919采纳,获得10
21秒前
21秒前
23秒前
25秒前
一头猪发布了新的文献求助10
26秒前
Bazinga完成签到,获得积分10
26秒前
嗯嗯嗯完成签到,获得积分10
27秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
27秒前
28秒前
嘿嘿发布了新的文献求助10
28秒前
able完成签到 ,获得积分10
29秒前
30秒前
嗯嗯嗯发布了新的文献求助10
31秒前
丘比特应助度ewf采纳,获得10
32秒前
丽丽丽发布了新的文献求助10
32秒前
yyanxuemin919发布了新的文献求助10
32秒前
蘑菇完成签到 ,获得积分10
35秒前
jam发布了新的文献求助10
35秒前
36秒前
烟花应助ccc采纳,获得10
37秒前
拉长的诗蕊完成签到,获得积分10
37秒前
38秒前
大妙妙完成签到 ,获得积分10
41秒前
41秒前
里里完成签到 ,获得积分10
42秒前
韩妙发布了新的文献求助10
43秒前
科研通AI6应助丽丽丽采纳,获得10
44秒前
太渊完成签到 ,获得积分10
44秒前
ccc发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432