Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics

芍药苷 偏最小二乘回归 过程分析技术 化学计量学 相关系数 甘草苷 近红外光谱 化学 分析化学(期刊) 色谱法 生物系统 数学 统计 高效液相色谱法 工程类 生物过程 物理 量子力学 生物 化学工程
作者
Ronghua Liu,Qiaofeng Sun,Hu Tian,Lian Li,Lei Nie,Jiayue Wang,Wanhui Zhou,Hengchang Zang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:192: 75-81 被引量:42
标识
DOI:10.1016/j.saa.2017.10.068
摘要

As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助ZHEN采纳,获得10
刚刚
1秒前
cruise发布了新的文献求助10
1秒前
2秒前
sdfaef完成签到,获得积分10
2秒前
AUM123发布了新的文献求助10
3秒前
巴卡巴卡完成签到,获得积分10
3秒前
XXQ发布了新的文献求助10
3秒前
4秒前
林菲菲发布了新的文献求助10
5秒前
try发布了新的文献求助10
5秒前
宇宙队发布了新的文献求助10
5秒前
慧子发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
巴卡巴卡发布了新的文献求助10
6秒前
杜可欣发布了新的文献求助10
6秒前
6秒前
芳菲依旧应助紫熊采纳,获得10
6秒前
7秒前
fengfenghao完成签到,获得积分10
7秒前
赘婿应助zkyyy采纳,获得10
7秒前
BB88完成签到,获得积分10
8秒前
小蒋完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
英姑应助LLHHZZ采纳,获得10
9秒前
lishanner完成签到,获得积分10
9秒前
9秒前
Foalphaz发布了新的文献求助10
10秒前
sijietan发布了新的文献求助10
10秒前
10秒前
11秒前
甜甜的平文完成签到 ,获得积分10
11秒前
HXU完成签到,获得积分20
11秒前
11秒前
Yapi完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791