Experimental measurement of roller slip in end-pivoted roller follower valve train

滑脱 润滑油 打滑(空气动力学) 汽车工程 惯性 机械工程 润滑 工作(物理) 旋转(数学) 工程类 结构工程 计算机科学 航空航天工程 物理 经典力学 人工智能
作者
Muhammad Khurram,Riaz Ahmad Mufti,Rehan Zahid,Naqash Afzal,Muhammad Usman Bhutta
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology [SAGE]
卷期号:229 (9): 1047-1055 被引量:12
标识
DOI:10.1177/1350650115572198
摘要

Direct-acting tappets and end-pivoted roller followers are the two main types of valve train configurations widely used in passenger car engines. Considerable theoretical and experimental work has been carried out on the direct-acting valve train. However, due to complex nature of the end-pivoted rollers, limited work has been carried out in this area. In roller follower valve train, the roller rotation has a direct impact on the performance in terms of component durability and friction. Roller rotation minimizes the chances of fatigue failure by even distribution of wear, improves the lubrication, and influences the valve train power loss. In this research work, the effect of lubricant rheology and operating conditions on the performance of end-pivoted roller follower has been studied experimentally in detail. Tests have been carried out on real production engine, avoiding any major modification to the components under investigation. The tests revealed presence of roller slip at certain operating conditions. Lubricant viscosity played a key role in the slippage of roller at lower temperatures, however, at high temperatures, negative slip was observed indicating that component inertia has a role to play in roller slip. High camshaft operating speeds and roller inertia increased the tendency of slippage. The study of roller slip was not possible without the development of a new method of measuring roller performance, also reported in this paper. The experimental set up, roller rotation measurement system, test procedure, and results are presented and discussed in detail.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助无心的紫菜采纳,获得10
刚刚
海兵完成签到 ,获得积分10
刚刚
ding应助yfn采纳,获得10
1秒前
武坤发布了新的文献求助10
1秒前
1秒前
1秒前
BZPL完成签到,获得积分10
1秒前
2秒前
2秒前
生动高丽发布了新的文献求助10
2秒前
reap发布了新的文献求助10
2秒前
我是老大应助能干冰露采纳,获得10
2秒前
chen发布了新的文献求助10
3秒前
一丝不苟的兔子完成签到,获得积分10
3秒前
3秒前
3秒前
大个应助单福克斯采纳,获得10
4秒前
4秒前
猫一样的发布了新的文献求助10
4秒前
随机ID完成签到,获得积分10
4秒前
lzz发布了新的文献求助10
4秒前
suchui发布了新的文献求助10
4秒前
很多奶油完成签到 ,获得积分10
4秒前
sdsff发布了新的文献求助10
4秒前
4秒前
无极微光应助嘎嘎采纳,获得20
5秒前
6秒前
无花果应助雪白的友安采纳,获得10
6秒前
RY完成签到,获得积分10
6秒前
caffeine发布了新的文献求助10
7秒前
7秒前
LI完成签到,获得积分10
8秒前
liumou发布了新的文献求助10
8秒前
Young发布了新的文献求助10
8秒前
茗白发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
reap完成签到,获得积分10
9秒前
deserted完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836