Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots

量子点 纳米技术 荧光 纳米材料 可控性 材料科学 合成生物学 光致发光 光电子学 生物 物理 生物信息学 应用数学 数学 量子力学
作者
Ran Cui,Huihui Liu,Hai‐Yan Xie,Zhiling Zhang,Yi‐Ran Yang,Dai‐Wen Pang,Zhixiong Xie,Beibei Chen,Bin Hu,Ping Shen
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:19 (15): 2359-2364 被引量:179
标识
DOI:10.1002/adfm.200801492
摘要

Abstract There are currently some problems in the field of chemical synthesis, such as environmental impact, energy loss, and safety, that need to be tackled urgently. An interdisciplinary approach, based on different backgrounds, may succeed in solving these problems. Organisms can be chosen as potential platforms for materials fabrication, since biosystems are natural and highly efficient. Here, an example of how to solve some of these chemical problems through biology, namely, through a novel biological strategy of coupling intracellular irrelated biochemical reactions for controllable synthesis of multicolor CdSe quantum dots (QDs) using living yeast cells as a biosynthesizer, is demonstrated. The unique fluorescence properties of CdSe QDs can be utilized to directly and visually judge the biosynthesis phase to fully demonstrate this strategy. By such a method, CdSe QDs, emitting at a variety of single fluorescence wavelengths, can be intracellularly, controllably synthesized at just 30°C instead of at 300°C with combustible, explosive, and toxic organic reagents. This green biosynthetic route is a novel strategy of coupling, with biochemical reactions taking place irrelatedly, both in time and space. It involves a remarkable decrease in reaction temperature, from around 300 °C to 30 °C and excellent color controllability of CdSe photoluminescence. It is well known that to control the size of nanocrystals is a mojor challenge in the biosynthesis of high‐quality nanomaterials. The present work demonstrates clearly that biological systems can be creatively utilized to realize controllable unnatural biosynthesis that normally does not exist, offering new insights for sustainable chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助glitter采纳,获得10
2秒前
4秒前
4秒前
啊Cu吖完成签到,获得积分10
5秒前
sjsuA完成签到,获得积分10
5秒前
6秒前
会飞的鹦鹉完成签到 ,获得积分10
7秒前
活力菠萝完成签到,获得积分10
7秒前
木子李发布了新的文献求助10
9秒前
reegdsgsfd发布了新的文献求助10
9秒前
李小宇完成签到,获得积分10
10秒前
陈陈完成签到 ,获得积分10
12秒前
14秒前
小常不馋完成签到 ,获得积分10
14秒前
Wilddeer完成签到 ,获得积分10
15秒前
中午完成签到,获得积分10
15秒前
Lucia完成签到,获得积分20
15秒前
往返自然完成签到,获得积分10
16秒前
Lucia发布了新的文献求助10
18秒前
YBW完成签到,获得积分20
18秒前
19秒前
明帅完成签到,获得积分10
20秒前
杜杨帆完成签到,获得积分10
20秒前
我想快点毕业啊完成签到,获得积分10
20秒前
桂花完成签到 ,获得积分10
22秒前
zhaoyichun完成签到,获得积分10
22秒前
请你加倍努力完成签到 ,获得积分10
24秒前
酒笙关注了科研通微信公众号
27秒前
悦耳的乐松完成签到,获得积分10
28秒前
我是老大应助HYY采纳,获得10
28秒前
28秒前
DKE完成签到,获得积分10
29秒前
29秒前
32秒前
阳光he应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
内向的芸发布了新的文献求助10
33秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2995349
求助须知:如何正确求助?哪些是违规求助? 2655404
关于积分的说明 7185835
捐赠科研通 2291019
什么是DOI,文献DOI怎么找? 1214225
版权声明 592771
科研通“疑难数据库(出版商)”最低求助积分说明 592738