石墨烯
氢氧化物
催化作用
复合数
层状双氢氧化物
材料科学
化学工程
纳米技术
化学
复合材料
有机化学
工程类
作者
Renfeng Xie,Guoli Fan,Qian Ma,Lan Yang,Feng Li
出处
期刊:Journal of materials chemistry. A, Materials for energy and sustainability
[The Royal Society of Chemistry]
日期:2014-05-06
卷期号:2 (21): 7880-7880
被引量:86
摘要
In this paper, graphene-supported Ni nanocatalyst (Ni/G) was prepared via self-reduction of a hybrid Ni–Al layered double hydroxide/graphene (NiAl-LDH/G) composite precursor. NiAl-LDH/G nanocomposite was assembled via a facile one-step coprecipitation route, which involved the nucleation and growth of NiAl-LDH, simultaneously accompanied by the reduction of graphene oxide without the addition of any reducing agents. The characterization results demonstrated that NiAl-LDH nanoplatelets were homogeneously dispersed on both sides of an exfoliated, structurally flexible graphene The graphene component in the precursor, serving as reducing agent, could in situ reduce Ni2+ species to Ni0 on heating under an inert atmosphere, thus facilitating the formation of highly dispersed Ni nanoparticles with a uniform size. Compared with those prepared by conventional methods, as-formed graphene-supported Ni nanocatalyst exhibited superior catalytic performance in the liquid phase selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde owing to the much higher metal dispersion and smaller size of Ni nanoparticles in the catalyst. The present finding provides a simple approach to fabricate new types of graphene-supported, metal-based heterogeneous catalysts with advanced catalytic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI