In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

决策树 数量结构-活动关系 集成学习 生物信息学 机器学习 水生毒理学 人工智能 计算机科学 数学 毒性 化学 生物化学 基因 有机化学
作者
Kunwar P. Singh,Shikha Gupta
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:275 (3): 198-212 被引量:23
标识
DOI:10.1016/j.taap.2014.01.006
摘要

Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R2) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助qaq采纳,获得10
刚刚
世界尽头发布了新的文献求助10
刚刚
小二郎应助科研民工采纳,获得10
刚刚
1秒前
无奈满天发布了新的文献求助10
1秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
贪玩丸子完成签到,获得积分10
2秒前
神勇的雅香应助liutaili采纳,获得10
3秒前
KSGGS完成签到,获得积分10
3秒前
YANG关注了科研通微信公众号
3秒前
4秒前
4秒前
4秒前
99发布了新的文献求助10
5秒前
5秒前
科研通AI5应助qi采纳,获得10
5秒前
乐乐发布了新的文献求助10
6秒前
铸一字错发布了新的文献求助10
6秒前
受伤书文完成签到,获得积分10
7秒前
Yvonne发布了新的文献求助10
7秒前
7秒前
温柔的十三完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
8秒前
nikai发布了新的文献求助10
8秒前
圣晟胜发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
9秒前
小金应助科研通管家采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759