已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

决策树 数量结构-活动关系 集成学习 生物信息学 机器学习 水生毒理学 人工智能 计算机科学 数学 毒性 化学 生物化学 基因 有机化学
作者
Kunwar P. Singh,Shikha Gupta
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:275 (3): 198-212 被引量:23
标识
DOI:10.1016/j.taap.2014.01.006
摘要

Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R2) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助哈哈采纳,获得10
刚刚
刚刚
领导范儿应助认真的元枫采纳,获得10
刚刚
喷火龙完成签到,获得积分10
1秒前
zlf关闭了zlf文献求助
1秒前
善学以致用应助逢写必中采纳,获得10
3秒前
制冷剂完成签到 ,获得积分10
3秒前
ningwu完成签到,获得积分10
4秒前
9秒前
璨澄完成签到 ,获得积分10
9秒前
mm完成签到 ,获得积分10
10秒前
哈哈发布了新的文献求助10
13秒前
今后应助材料生采纳,获得10
15秒前
17秒前
20秒前
情怀应助活力的晓夏采纳,获得10
22秒前
无花果应助火星上的书竹采纳,获得30
24秒前
wenqing完成签到,获得积分10
24秒前
311完成签到,获得积分10
28秒前
29秒前
33秒前
小鹿嘻嘻发布了新的文献求助10
35秒前
36秒前
37秒前
woleaisa发布了新的文献求助10
37秒前
wuhao完成签到,获得积分10
39秒前
zlf发布了新的文献求助10
40秒前
不安青牛应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
隐形曼青应助拉扣采纳,获得10
49秒前
子凡完成签到 ,获得积分10
50秒前
52秒前
淡漠完成签到 ,获得积分10
53秒前
54秒前
bioglia完成签到,获得积分10
55秒前
57秒前
AlwaysKim发布了新的文献求助10
57秒前
渊_完成签到 ,获得积分10
57秒前
zlf完成签到,获得积分10
59秒前
杨小辉发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309