已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

决策树 数量结构-活动关系 集成学习 生物信息学 机器学习 水生毒理学 人工智能 计算机科学 数学 毒性 化学 生物化学 基因 有机化学
作者
Kunwar P. Singh,Shikha Gupta
出处
期刊:Toxicology and Applied Pharmacology [Elsevier]
卷期号:275 (3): 198-212 被引量:23
标识
DOI:10.1016/j.taap.2014.01.006
摘要

Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R2) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
医平青云完成签到 ,获得积分10
3秒前
somnus_fu发布了新的文献求助10
5秒前
zhenzheng完成签到 ,获得积分10
5秒前
6秒前
Xutz应助Jm采纳,获得10
7秒前
nicewink发布了新的文献求助10
9秒前
11秒前
12秒前
12秒前
13秒前
星辰大海应助蓦然回首采纳,获得20
15秒前
上官又莲完成签到,获得积分10
16秒前
养恩应助lvlei采纳,获得10
17秒前
bias发布了新的文献求助10
18秒前
沐1217发布了新的文献求助10
18秒前
20秒前
cnd完成签到 ,获得积分10
26秒前
华仔应助杭子轩采纳,获得10
26秒前
turui完成签到 ,获得积分10
26秒前
hani发布了新的文献求助10
27秒前
慕青应助葭月十七采纳,获得10
27秒前
27秒前
28秒前
cuidalice完成签到,获得积分10
29秒前
33秒前
33秒前
高兴寒梦完成签到 ,获得积分10
34秒前
潇洒的奇异果完成签到 ,获得积分10
35秒前
葭月十七发布了新的文献求助10
38秒前
英姑应助沐1217采纳,获得10
38秒前
研友_n0Dmwn发布了新的文献求助10
39秒前
39秒前
39秒前
40秒前
shaung yang完成签到,获得积分10
41秒前
hani完成签到,获得积分10
41秒前
42秒前
小面包狗发布了新的文献求助10
44秒前
飞飞飞fff完成签到 ,获得积分10
45秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229546
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8198010
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374437
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749