In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

决策树 数量结构-活动关系 集成学习 生物信息学 机器学习 水生毒理学 人工智能 计算机科学 数学 毒性 化学 生物化学 基因 有机化学
作者
Kunwar P. Singh,Shikha Gupta
出处
期刊:Toxicology and Applied Pharmacology [Elsevier BV]
卷期号:275 (3): 198-212 被引量:23
标识
DOI:10.1016/j.taap.2014.01.006
摘要

Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R2) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助感动哈密瓜采纳,获得10
1秒前
王涛完成签到,获得积分10
2秒前
3秒前
sxr完成签到,获得积分10
5秒前
王涛发布了新的文献求助30
5秒前
领导范儿应助合适成风采纳,获得10
6秒前
AC赵先生完成签到,获得积分10
7秒前
丫丫发布了新的文献求助10
8秒前
邵燚铭完成签到 ,获得积分10
8秒前
9秒前
情怀应助HJJHJH采纳,获得10
10秒前
10秒前
10秒前
11秒前
wwsybx完成签到 ,获得积分10
12秒前
12秒前
luria完成签到,获得积分10
12秒前
13秒前
sssxy发布了新的文献求助10
14秒前
14秒前
14秒前
喜悦的斓完成签到,获得积分10
15秒前
浮熙完成签到 ,获得积分10
15秒前
rym完成签到 ,获得积分10
15秒前
科研通AI2S应助snow采纳,获得10
15秒前
今后应助trans采纳,获得10
16秒前
十个勤天完成签到,获得积分10
16秒前
16秒前
yanting发布了新的文献求助10
16秒前
喜悦的斓发布了新的文献求助10
16秒前
16秒前
星星轨迹发布了新的文献求助10
16秒前
悦悦发布了新的文献求助10
17秒前
dudu发布了新的文献求助30
17秒前
17秒前
所所应助liuxh123采纳,获得10
18秒前
WW完成签到 ,获得积分10
19秒前
lilili发布了新的文献求助50
19秒前
orixero应助柴犬采纳,获得10
19秒前
英姑应助丫丫采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286