Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube

纳米流体学 渗透力 氮化硼 纳米技术 纳米管 材料科学 化学物理 水运 电位 碳纳米管 化学 水流 正渗透 电压 反渗透 环境科学 物理 环境工程 量子力学 生物化学
作者
Alessandro Siria,P. Poncharal,Anne-Laure Biance,Rémy Fulcrand,Xavier Blase,Stephen Purcell,Lydéric Bocquet
出处
期刊:Nature [Springer Nature]
卷期号:494 (7438): 455-458 被引量:1070
标识
DOI:10.1038/nature11876
摘要

A very large, osmotically induced electric current is generated by a salinity gradient between the ends of a single boron nitride transmembrane nanotube, owing to the anomalously high surface charge carried by the nanotube’s internal surface in water at large pH. This paper describes the fabrication of a new type of nanopore membrane, in which a single boron nitride nanotube traverses an ultrathin silicon nitride membrane. The platform allows an exploration of the effects of pressure, chemical gradients and electric fields on fluidic transport at the nanoscale. In addition, it suggests a possible route to new technologies capable of producing large amounts of electric power from salinity gradients. Reservoirs on each side of the membrane contain different potassium chloride concentrations, generating a salinity gradient across the nanotube. This gradient results in the generation of a large osmotically driven electric current that the authors attribute to a large surface charge carried by the internal walls of the nanotube in water at high pH. New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale1,2, with potential applications in ultrafiltration, desalination and energy conversion3. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube’s internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镜哥完成签到,获得积分10
刚刚
garyaa完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
17完成签到,获得积分10
1秒前
今后应助冷静的毛豆采纳,获得20
1秒前
1秒前
小马哥36发布了新的文献求助10
1秒前
ttttttuu发布了新的文献求助10
1秒前
甜美的秋凌完成签到,获得积分10
2秒前
10发布了新的文献求助10
3秒前
高高完成签到 ,获得积分10
3秒前
AAAAAAAAAAA发布了新的文献求助10
3秒前
4秒前
wxaaaa完成签到,获得积分10
4秒前
李爱国应助dd采纳,获得10
5秒前
6秒前
Jasper应助感性的凉面采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
情怀应助顺顺采纳,获得10
9秒前
garyaa发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助奔奔采纳,获得10
9秒前
Orange应助Clean采纳,获得10
10秒前
Lucas应助ww采纳,获得10
10秒前
11秒前
ttttttuu完成签到,获得积分10
11秒前
12秒前
刘涵完成签到 ,获得积分10
12秒前
小马甲应助zhui采纳,获得10
12秒前
10完成签到,获得积分10
12秒前
12秒前
12秒前
Rainielove0215完成签到,获得积分0
13秒前
zz完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794