青贮饲料
中性洗涤纤维
干物质
淀粉
动物科学
化学
营养物
乳酸
食品科学
消化(炼金术)
发酵
作文(语言)
农学
生物
色谱法
哲学
有机化学
细菌
遗传学
语言学
作者
Michelle C. Der Bedrosian,Karl E. Nestor,L. Kung
标识
DOI:10.3168/jds.2011-4833
摘要
The objective of this study was to evaluate the effect of hybrid, maturity at harvest [dry matter (DM) content], and length of storage on the composition and nutritive value of corn silage. The plants used in this study included a normal (NORM) and a brown midrib (BMR) hybrid, harvested at 32 or 41% DM and ensiled for various lengths of time (0 to 360 d) without inoculation. Measurements included nutrient analysis, fermentation end products, in vitro digestion of NDF (NDF-D, 30 h), and in vitro digestion of starch (7 h). The concentration of acetic acid increased with length of storage for all treatments, specifically increasing as much as 140% between d 45 to 360 for 32% DM BMR silage. Small changes in lactic acid and ethanol were noted but varied by DM and hybrid. When averaged across maturities and length of storage, compared with NORM, BMR silage was lower in concentrations of lignin, crude protein, neutral detergent fiber, and acid detergent fiber, but higher in starch. On average, NDF-D of both hybrids was not affected by length of storage between 45 and 270 d. The NDF-D was markedly greater for BMR than NORM after all times of storage. Increasing maturity at harvest generally did not affect the NDF-D of NORM, with the exception that it was slightly lower for the more mature plants at 270 and 360 d. In contrast, the NDF-D of BMR was lower in more mature silage by approximately 5 percentage units from 45 to 360 d. The concentration of starch for 32% DM NORM was lower (21%) than other treatments (31 ± 3%; mean ± SD) at harvest. This finding was probably the cause for starch digestibility to be highest in 32% DM NORM samples at d 0 (about 80%) and lower (65 to 68%) for other treatments. Concentrations of soluble N and ammonia-N increased with length of storage, indicating that proteolytic mechanisms were active beyond 2 to 3 mo of storage. The in vitro digestion of starch generally increased with length of storage, probably as a result of proteolysis. Although active fermentation occurs for only a relatively short time in the silo, many metabolic processes remain active during long-term storage. Changes in the nutritive value of corn silage during storage should be accounted for during ration formulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI