Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data

遥感 光辉 环境科学 时间分辨率 传感器融合 图像分辨率 卫星 蒸散量 气象学 计算机科学 地理 量子力学 生物 物理 工程类 航空航天工程 人工智能 生态学
作者
Qihao Weng,Ping Fu,Feng Gao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:145: 55-67 被引量:405
标识
DOI:10.1016/j.rse.2014.02.003
摘要

Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助nono采纳,获得10
刚刚
小闰土应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
兰贵人完成签到,获得积分10
1秒前
cocolu应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得50
2秒前
劲秉应助科研通管家采纳,获得30
2秒前
2秒前
桐桐应助Sivelestat采纳,获得10
3秒前
又村完成签到 ,获得积分10
3秒前
小橙子完成签到,获得积分10
3秒前
你猜完成签到,获得积分10
3秒前
xiao完成签到 ,获得积分10
4秒前
眯眯眼的衬衫应助dt采纳,获得10
4秒前
zzz发布了新的文献求助10
5秒前
5秒前
5秒前
灵巧书文发布了新的文献求助10
6秒前
acb完成签到,获得积分10
6秒前
6秒前
SciGPT应助笑点低的鸿采纳,获得10
6秒前
Gao发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
情怀应助小王采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助玄策采纳,获得10
9秒前
所所应助孟龙威采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483178
求助须知:如何正确求助?哪些是违规求助? 3072587
关于积分的说明 9127119
捐赠科研通 2764162
什么是DOI,文献DOI怎么找? 1516962
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700737