In this paper, we present a simple circuit model to study the absorption of electromagnetic waves by a multilayer structure with a high impedance surface in the microwave regime. The absorber consists of a stack of two-dimensional arrays of sub-wavelength meshes or patches separated by dielectric slabs and backed by a metallic ground plane, with a single resistive sheet placed on the top layer. We observe the appearance of low-frequency resonances of total absorption, which have been identified as the resonances of Fabry-P\'erot type associated with the individual reactively loaded dielectric slabs (that are strongly coupled through the subwavelength grids). It is shown that these resonances lie within certain characteristic frequency band defined by the structural parameters of the absorber. The observed resonances are characterized by studying the electromagnetic field behavior using the circuit model and full-wave numerical program. In addition, we show that the patch array absorber provides stable resonances with respect to the angle and the polarization of obliquely incident plane waves.