人工神经网络
反向传播
伺服机构
非线性系统
控制理论(社会学)
计算机科学
前馈
MATLAB语言
前馈神经网络
控制工程
鉴定(生物学)
系统标识
人工智能
控制(管理)
工程类
数据建模
物理
量子力学
操作系统
植物
数据库
生物
作者
Xinyu Ouyang,Claire Morgan,Christopher Nwagboso
出处
期刊:Simulation
[SAGE]
日期:2001-05-01
卷期号:76 (5): 263-272
被引量:3
标识
DOI:10.1177/003754970107600503
摘要
The most useful property of neural networks for system identification and control is their ability to approximate arbitrary nonlinear mappings. In this paper, a new neural network model-following control method is proposed for nonlinear servo systems. First, three-layer artificial neural net works are trained to describe the forward and in verse dynamic characteristics of one type of speci fied nonlinear servo systems by using the backpropagation algorithm. Then the neural net work inverse model is used as a feedforward con troller for model-following control of the nonlin ear servo systems. Computer simulation results obtained from MATLAB verify the applicability of neural network identification and control for nonlinear servo systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI