Pattern recognition of number gestures based on a wireless surface EMG system

线性判别分析 计算机科学 支持向量机 人工智能 模式识别(心理学) 手势 手势识别 语音识别 特征(语言学) 二次分类器 特征提取 判别式 语言学 哲学
作者
Xun Chen,Z. Jane Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:8 (2): 184-192 被引量:122
标识
DOI:10.1016/j.bspc.2012.08.005
摘要

Using surface electromyography (sEMG) signal for efficient recognition of hand gestures has attracted increasing attention during the last decade, with most previous work being focused on recognition of upper arm and gross hand movements and some work on the classification of individual finger movements such as finger typing tasks. However, relatively few investigations can be found in the literature for automatic classification of multiple finger movements such as finger number gestures. This paper focuses on the recognition of number gestures based on a 4-channel wireless sEMG system. We investigate the effects of three popular feature types (i.e. Hudgins’ time–domain features (TD), autocorrelation and cross-correlation coefficients (ACCC) and spectral power magnitudes (SPM)) and four popular classification algorithms (i.e. k-nearest neighbor (k-NN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector machine (SVM)) in offline recognition. Motivated by the good performance of SVM, we further propose combining the three features and employing a new classification method, multiple kernel learning SVM (MKL-SVM). Real sEMG results from six subjects show that all combinations, except k-NN or LDA using ACCC features, can achieve above 91% average recognition accuracy, and the highest accuracy is 97.93% achieved by the proposed MKL-SVM method using the three feature combination (3F). Referring to the offline recognition results, we also implement a real-time recognition system. Our results show that all six subjects can achieve a real-time recognition accuracy higher than 90%. The number gestures are therefore promising for practical applications such as human–computer interaction (HCI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到,获得积分10
1秒前
明棋发布了新的文献求助10
2秒前
wy完成签到,获得积分10
3秒前
Steven发布了新的文献求助10
3秒前
小鱼发布了新的文献求助10
4秒前
LIUS给LIUS的求助进行了留言
6秒前
今后应助学术小白采纳,获得10
6秒前
机智的紫丝完成签到,获得积分10
7秒前
517完成签到 ,获得积分10
8秒前
不安的大白菜真实的钥匙完成签到,获得积分10
9秒前
王欣完成签到 ,获得积分10
10秒前
zyj完成签到,获得积分10
10秒前
11秒前
YG完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
苏航发布了新的文献求助10
17秒前
gh完成签到,获得积分10
18秒前
JULY发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
22秒前
yyt发布了新的文献求助10
24秒前
24秒前
TJW完成签到 ,获得积分10
25秒前
orixero应助wnan_07采纳,获得10
25秒前
Steven发布了新的文献求助10
26秒前
loulan完成签到,获得积分10
26秒前
吴兰田完成签到,获得积分10
26秒前
汉堡包应助Clarence采纳,获得10
28秒前
PsyQin完成签到,获得积分10
30秒前
30秒前
30秒前
Owen应助D_D采纳,获得10
31秒前
cqsjy完成签到,获得积分10
31秒前
老实易蓉发布了新的文献求助10
32秒前
彭于晏完成签到,获得积分10
33秒前
jim完成签到 ,获得积分10
34秒前
阔达苡发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150