作者
Hong Jo Lee,Jong Won Yoon,Kyung Min Jung,Young Min Kim,Jin Se Park,Kyung Youn Lee,Kyung Je Park,Young Sun Hwang,Young Hyun Park,Deivendran Rengaraj,Jae Yong Han
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome–targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.—Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J. 33, 8519–8529 (2019). www.fasebj.org