Chemo-Mechanical Challenges in Solid-State Batteries

纳米技术 电解质 快离子导体 材料科学 锂(药物) 表征(材料科学) 电极 储能 机械工程 工程物理 工程类 化学 功率(物理) 内分泌学 物理化学 物理 医学 量子力学
作者
John A. Lewis,Jared Tippens,Francisco Javier Quintero Cortes,Matthew T. McDowell
出处
期刊:Trends in chemistry [Elsevier]
卷期号:1 (9): 845-857 被引量:190
标识
DOI:10.1016/j.trechm.2019.06.013
摘要

Solid-state electrolytes (SSEs) can transmit stress and strain at interfaces, making solid-state batteries susceptible to chemo-mechanical degradation during electrochemical cycling. Most Li/SSE interfaces are chemically unstable and evolve to form an interphase layer with different structure and properties. Understanding these chemo-mechanical phenomena requires the use of advanced in situ and operando characterization techniques and correlated modeling. The development of high-performance solid-state batteries will require control over the evolution and reactivity of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. the interplay between chemistry and mechanics. In batteries, chemo-mechanics typically manifests as reactions (chemical or electrochemical) driving a mechanical response in a material, such as an electrode particle expanding during the insertion of Li. Conversely, chemo-mechanics can also involve mechanical forces driving chemical changes, such as altering the chemical potential of a system. a mixture consisting of an active electrode material and a solid-state electrolyte (typically as particles). Additives such as conductive carbon can be included to enhance transport properties within the composite. the current density at which lithium metal first penetrates through a solid-state electrolyte in an electrochemical cell, causing a short-circuit. At current densities below this value, cells can be stably cycled without short-circuiting. a phase or mixture of phases that forms at the interface between an electrolyte material and an electrode material in a battery due to chemical or electrochemical reactions. a phase that is both an ionic and electronic conductor. In solid-state electrolytes, the formation of MIECs within the electrolyte is detrimental due to the inability of MIECs to passivate against electrochemical reduction. a solid material with high ionic conductivity (typically greater than 10–4 S cm–1 at room temperature) and low electronic conductivity (typically less than 10–8 S cm–1) that allows for ion transport between the anode and cathode in an electrochemical cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DONNYTIO完成签到,获得积分10
1秒前
黑大侠完成签到,获得积分10
4秒前
徐浩彬完成签到 ,获得积分10
4秒前
ax完成签到,获得积分10
5秒前
宇宙飞船2436完成签到,获得积分10
6秒前
MXX完成签到,获得积分10
8秒前
xiaokache发布了新的文献求助30
9秒前
开心的QQ熊完成签到,获得积分10
11秒前
悦耳冰蓝完成签到,获得积分10
12秒前
圆圆完成签到,获得积分10
14秒前
bzdjsmw完成签到 ,获得积分10
14秒前
yxm完成签到 ,获得积分10
19秒前
老四完成签到,获得积分10
20秒前
粗犷的沛容完成签到,获得积分10
21秒前
vagabond完成签到 ,获得积分10
23秒前
evergarden完成签到 ,获得积分10
26秒前
土狗完成签到,获得积分10
27秒前
多多发SCI完成签到,获得积分10
28秒前
研友_nPxRRn完成签到,获得积分10
31秒前
枫林摇曳完成签到 ,获得积分10
31秒前
李爱国应助wnll采纳,获得10
33秒前
娜na完成签到 ,获得积分10
34秒前
Dobby完成签到,获得积分10
34秒前
江三村完成签到 ,获得积分10
36秒前
ko1完成签到 ,获得积分10
36秒前
轩辕剑身完成签到,获得积分0
36秒前
阡陌完成签到,获得积分10
39秒前
重要的惜萍完成签到,获得积分10
41秒前
43秒前
小敏完成签到,获得积分10
47秒前
steve完成签到,获得积分10
47秒前
66完成签到,获得积分10
48秒前
二不二发布了新的文献求助10
48秒前
科研通AI2S应助RJY采纳,获得10
49秒前
YYY完成签到,获得积分10
49秒前
wangeil007完成签到,获得积分10
52秒前
miemie66完成签到,获得积分10
52秒前
啦啦啦~完成签到,获得积分10
54秒前
小喵完成签到 ,获得积分10
55秒前
55秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180028
求助须知:如何正确求助?哪些是违规求助? 2830388
关于积分的说明 7976586
捐赠科研通 2491954
什么是DOI,文献DOI怎么找? 1329130
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954