Chemo-Mechanical Challenges in Solid-State Batteries

纳米技术 电解质 快离子导体 材料科学 锂(药物) 表征(材料科学) 电极 储能 机械工程 工程物理 工程类 化学 功率(物理) 内分泌学 物理化学 物理 医学 量子力学
作者
John A. Lewis,Jared Tippens,Francisco Javier Quintero Cortes,Matthew T. McDowell
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (9): 845-857 被引量:202
标识
DOI:10.1016/j.trechm.2019.06.013
摘要

Solid-state electrolytes (SSEs) can transmit stress and strain at interfaces, making solid-state batteries susceptible to chemo-mechanical degradation during electrochemical cycling. Most Li/SSE interfaces are chemically unstable and evolve to form an interphase layer with different structure and properties. Understanding these chemo-mechanical phenomena requires the use of advanced in situ and operando characterization techniques and correlated modeling. The development of high-performance solid-state batteries will require control over the evolution and reactivity of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. the interplay between chemistry and mechanics. In batteries, chemo-mechanics typically manifests as reactions (chemical or electrochemical) driving a mechanical response in a material, such as an electrode particle expanding during the insertion of Li. Conversely, chemo-mechanics can also involve mechanical forces driving chemical changes, such as altering the chemical potential of a system. a mixture consisting of an active electrode material and a solid-state electrolyte (typically as particles). Additives such as conductive carbon can be included to enhance transport properties within the composite. the current density at which lithium metal first penetrates through a solid-state electrolyte in an electrochemical cell, causing a short-circuit. At current densities below this value, cells can be stably cycled without short-circuiting. a phase or mixture of phases that forms at the interface between an electrolyte material and an electrode material in a battery due to chemical or electrochemical reactions. a phase that is both an ionic and electronic conductor. In solid-state electrolytes, the formation of MIECs within the electrolyte is detrimental due to the inability of MIECs to passivate against electrochemical reduction. a solid material with high ionic conductivity (typically greater than 10–4 S cm–1 at room temperature) and low electronic conductivity (typically less than 10–8 S cm–1) that allows for ion transport between the anode and cathode in an electrochemical cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao完成签到,获得积分10
刚刚
刚刚
1秒前
小马甲应助微笑可乐采纳,获得10
1秒前
1秒前
BJ_whc完成签到,获得积分10
1秒前
魔幻匪发布了新的文献求助200
3秒前
白衣卿相发布了新的文献求助10
3秒前
Tao发布了新的文献求助10
5秒前
hammer发布了新的文献求助10
5秒前
sci公主发布了新的文献求助10
5秒前
6秒前
今后应助紫心采纳,获得10
6秒前
7秒前
7秒前
cc发布了新的文献求助10
7秒前
桐桐应助zewangguo采纳,获得10
7秒前
zijingsy完成签到 ,获得积分10
8秒前
王水苗完成签到,获得积分10
8秒前
666完成签到 ,获得积分0
9秒前
归途发布了新的文献求助10
9秒前
10秒前
tree完成签到,获得积分10
11秒前
白衣卿相完成签到,获得积分10
11秒前
大大方方完成签到,获得积分10
12秒前
littlestone完成签到,获得积分10
12秒前
王水苗发布了新的文献求助10
12秒前
Amanda完成签到,获得积分10
12秒前
13秒前
蓝云楼完成签到,获得积分10
13秒前
14秒前
14秒前
jh完成签到 ,获得积分10
15秒前
叮当发布了新的文献求助10
15秒前
淘气科研发布了新的文献求助10
15秒前
赘婿应助hammer采纳,获得10
16秒前
16秒前
16秒前
17秒前
Stefani发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286