清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Chemo-Mechanical Challenges in Solid-State Batteries

纳米技术 电解质 快离子导体 材料科学 锂(药物) 表征(材料科学) 电极 储能 机械工程 工程物理 工程类 化学 功率(物理) 内分泌学 物理化学 物理 医学 量子力学
作者
John A. Lewis,Jared Tippens,Francisco Javier Quintero Cortes,Matthew T. McDowell
出处
期刊:Trends in chemistry [Elsevier]
卷期号:1 (9): 845-857 被引量:225
标识
DOI:10.1016/j.trechm.2019.06.013
摘要

Solid-state electrolytes (SSEs) can transmit stress and strain at interfaces, making solid-state batteries susceptible to chemo-mechanical degradation during electrochemical cycling. Most Li/SSE interfaces are chemically unstable and evolve to form an interphase layer with different structure and properties. Understanding these chemo-mechanical phenomena requires the use of advanced in situ and operando characterization techniques and correlated modeling. The development of high-performance solid-state batteries will require control over the evolution and reactivity of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. the interplay between chemistry and mechanics. In batteries, chemo-mechanics typically manifests as reactions (chemical or electrochemical) driving a mechanical response in a material, such as an electrode particle expanding during the insertion of Li. Conversely, chemo-mechanics can also involve mechanical forces driving chemical changes, such as altering the chemical potential of a system. a mixture consisting of an active electrode material and a solid-state electrolyte (typically as particles). Additives such as conductive carbon can be included to enhance transport properties within the composite. the current density at which lithium metal first penetrates through a solid-state electrolyte in an electrochemical cell, causing a short-circuit. At current densities below this value, cells can be stably cycled without short-circuiting. a phase or mixture of phases that forms at the interface between an electrolyte material and an electrode material in a battery due to chemical or electrochemical reactions. a phase that is both an ionic and electronic conductor. In solid-state electrolytes, the formation of MIECs within the electrolyte is detrimental due to the inability of MIECs to passivate against electrochemical reduction. a solid material with high ionic conductivity (typically greater than 10–4 S cm–1 at room temperature) and low electronic conductivity (typically less than 10–8 S cm–1) that allows for ion transport between the anode and cathode in an electrochemical cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红火发布了新的文献求助10
7秒前
务实的一斩完成签到 ,获得积分10
13秒前
Komorebi完成签到 ,获得积分10
18秒前
27秒前
icoo发布了新的文献求助10
34秒前
drhwang完成签到,获得积分10
43秒前
红火完成签到 ,获得积分10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
共享精神应助binbin采纳,获得30
1分钟前
wakawaka完成签到 ,获得积分10
1分钟前
小蘑菇应助icoo采纳,获得10
1分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
ww完成签到,获得积分10
2分钟前
icoo发布了新的文献求助10
2分钟前
卜哥完成签到 ,获得积分10
2分钟前
2分钟前
飞天沙漠完成签到,获得积分10
2分钟前
xiaoxiao完成签到 ,获得积分10
3分钟前
婉扬应助紫熊采纳,获得10
3分钟前
安安最可爱完成签到 ,获得积分10
3分钟前
3分钟前
binbin发布了新的文献求助30
3分钟前
隐形曼青应助drtftyv采纳,获得30
3分钟前
3分钟前
有只kangaroo完成签到 ,获得积分10
3分钟前
drtftyv发布了新的文献求助30
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
drtftyv完成签到,获得积分10
3分钟前
科研通AI2S应助紫熊采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
CipherSage应助韩明佐采纳,获得10
4分钟前
4分钟前
杨维完成签到 ,获得积分10
4分钟前
4分钟前
韩明佐发布了新的文献求助10
4分钟前
连安阳发布了新的文献求助400
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628541
求助须知:如何正确求助?哪些是违规求助? 4717417
关于积分的说明 14964473
捐赠科研通 4786312
什么是DOI,文献DOI怎么找? 2555753
邀请新用户注册赠送积分活动 1516932
关于科研通互助平台的介绍 1477578