In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints

生物信息学 广告 数量结构-活动关系 计算机科学 萃取(化学) 生化工程 计算生物学 化学 机器学习 药理学 生物 色谱法 工程类 药品 生物化学 基因
作者
Alexios Koutsoukas,George Chang,Christopher Keefer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 477-485 被引量:10
标识
DOI:10.1021/acs.jcim.8b00520
摘要

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净青亦发布了新的文献求助10
刚刚
1秒前
2秒前
pcr163应助科研通管家采纳,获得80
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
LLLJW应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
礼礼应助科研通管家采纳,获得10
3秒前
zl12345完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
3秒前
吴彦祖完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
9秒前
Ava应助Yoci采纳,获得10
10秒前
超级雨完成签到,获得积分10
10秒前
ln发布了新的文献求助10
10秒前
10秒前
无花果应助sukii采纳,获得30
12秒前
KKKKK完成签到,获得积分20
13秒前
Ava应助吴彦祖采纳,获得10
15秒前
16秒前
九千七发布了新的文献求助10
16秒前
sxc发布了新的文献求助10
17秒前
angen完成签到 ,获得积分10
17秒前
李健应助baixun采纳,获得10
18秒前
完美世界应助百里太清采纳,获得10
18秒前
不懈奋进应助mashibeo采纳,获得30
19秒前
罗博超发布了新的文献求助10
20秒前
20秒前
lxl发布了新的文献求助50
22秒前
23秒前
fdwang完成签到 ,获得积分10
23秒前
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220