已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints

生物信息学 广告 数量结构-活动关系 计算机科学 萃取(化学) 生化工程 计算生物学 化学 机器学习 药理学 生物 色谱法 工程类 药品 生物化学 基因
作者
Alexios Koutsoukas,George Chang,Christopher Keefer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 477-485 被引量:10
标识
DOI:10.1021/acs.jcim.8b00520
摘要

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
胡豆关注了科研通微信公众号
3秒前
4秒前
汉堡包应助初遇之时最暖采纳,获得10
4秒前
辛勤的喉完成签到 ,获得积分10
6秒前
6秒前
7秒前
SciGPT应助神农采纳,获得10
8秒前
五月初夏发布了新的文献求助10
9秒前
wanci应助称心的水蓉采纳,获得10
10秒前
我为长夜掌孤灯完成签到,获得积分10
10秒前
华仔应助生动的阑香采纳,获得10
10秒前
无私如花关注了科研通微信公众号
11秒前
宫主完成签到,获得积分10
11秒前
Ming Chen发布了新的文献求助10
11秒前
李健应助味精采纳,获得10
12秒前
kyn完成签到 ,获得积分10
13秒前
江心洲农民完成签到,获得积分10
14秒前
英俊芷完成签到 ,获得积分10
15秒前
18秒前
花深粥完成签到,获得积分10
19秒前
神农完成签到,获得积分10
19秒前
szh完成签到,获得积分10
21秒前
共享精神应助小刘哥儿采纳,获得10
23秒前
夜星子发布了新的文献求助10
23秒前
24秒前
25秒前
善学以致用应助山水之乐采纳,获得10
25秒前
25秒前
1111完成签到 ,获得积分10
25秒前
陶醉晓凡发布了新的文献求助10
26秒前
123完成签到,获得积分10
27秒前
FashionBoy应助Lavender采纳,获得10
27秒前
27秒前
cc完成签到,获得积分10
28秒前
小桃枝发布了新的文献求助10
29秒前
zeng完成签到,获得积分10
30秒前
moon完成签到,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719