已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints

生物信息学 广告 数量结构-活动关系 计算机科学 萃取(化学) 生化工程 计算生物学 化学 机器学习 药理学 生物 色谱法 工程类 药品 生物化学 基因
作者
Alexios Koutsoukas,George Chang,Christopher Keefer
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 477-485 被引量:10
标识
DOI:10.1021/acs.jcim.8b00520
摘要

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
但行好事完成签到,获得积分10
1秒前
Aleioy完成签到,获得积分10
2秒前
xh完成签到 ,获得积分10
2秒前
自由的氧化铝完成签到 ,获得积分10
3秒前
高飞发布了新的文献求助10
4秒前
xiuxiu完成签到 ,获得积分10
5秒前
瀅瀅发布了新的文献求助10
5秒前
7秒前
8秒前
卡皮巴拉完成签到,获得积分10
8秒前
wqqwds完成签到,获得积分10
10秒前
春风完成签到 ,获得积分10
10秒前
洛城完成签到,获得积分10
12秒前
新晋学术小生完成签到 ,获得积分10
13秒前
凡华发布了新的文献求助10
14秒前
鳗鱼忆山完成签到 ,获得积分10
14秒前
火星上安筠完成签到,获得积分10
15秒前
17秒前
忧伤的冰薇完成签到 ,获得积分10
17秒前
科研通AI6应助Bo采纳,获得10
18秒前
悄悄拔尖儿完成签到 ,获得积分10
19秒前
阳佟水蓉完成签到,获得积分10
20秒前
张琳琳完成签到 ,获得积分10
22秒前
独特海白完成签到,获得积分10
22秒前
龙骑士25完成签到 ,获得积分10
23秒前
王者归来完成签到,获得积分10
23秒前
怂怂鼠完成签到,获得积分10
24秒前
jyy应助等待老太采纳,获得10
24秒前
wangxiaobin完成签到 ,获得积分10
25秒前
感谢大哥的帮助完成签到 ,获得积分10
26秒前
Ava应助ely_siesta采纳,获得10
26秒前
小李要上岸完成签到,获得积分10
27秒前
寒冷沛蓝发布了新的文献求助30
28秒前
樊家璇发布了新的文献求助30
29秒前
30秒前
北葵应助泡泡糖采纳,获得30
30秒前
科研学术完成签到,获得积分10
31秒前
七妈完成签到,获得积分10
32秒前
拼搏姒发布了新的文献求助10
32秒前
科研通AI6应助凡华采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509011
求助须知:如何正确求助?哪些是违规求助? 4604108
关于积分的说明 14489055
捐赠科研通 4538690
什么是DOI,文献DOI怎么找? 2487178
邀请新用户注册赠送积分活动 1469600
关于科研通互助平台的介绍 1441822