Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set

主要组织相容性复合体 生物信息学 人类白细胞抗原 表位 灵敏度(控制系统) MHC I级 计算生物学 计算机科学 接收机工作特性 数据挖掘 人工智能 生物 抗原 机器学习 免疫学 遗传学 生物化学 工程类 基因 电子工程
作者
Maria Bonsack,Stéphanie Hoppe,Jan Winter,Diana Tichy,Christine Zeller,Marius D. Küpper,Eva C. Schitter,Renata Blatnik,Angelika B. Riemer
出处
期刊:Cancer immunology research [American Association for Cancer Research]
卷期号:7 (5): 719-736 被引量:71
标识
DOI:10.1158/2326-6066.cir-18-0584
摘要

Knowing whether a protein can be processed and the resulting peptides presented by major histocompatibility complex (MHC) is highly important for immunotherapy design. MHC ligands can be predicted by in silico peptide-MHC class-I binding prediction algorithms. However, prediction performance differs considerably, depending on the selected algorithm, MHC class-I type, and peptide length. We evaluated the prediction performance of 13 algorithms based on binding affinity data of 8- to 11-mer peptides derived from the HPV16 E6 and E7 proteins to the most prevalent human leukocyte antigen (HLA) types. Peptides from high to low predicted binding likelihood were synthesized, and their HLA binding was experimentally verified by in vitro competitive binding assays. Based on the actual binding capacity of the peptides, the performance of prediction algorithms was analyzed by calculating receiver operating characteristics (ROC) and the area under the curve (AROC). No algorithm outperformed others, but different algorithms predicted best for particular HLA types and peptide lengths. The sensitivity, specificity, and accuracy of decision thresholds were calculated. Commonly used decision thresholds yielded only 40% sensitivity. To increase sensitivity, optimal thresholds were calculated, validated, and compared. In order to make maximal use of prediction algorithms available online, we developed MHCcombine, a web application that allows simultaneous querying and output combination of up to 13 prediction algorithms. Taken together, we provide here an evaluation of peptide-MHC class-I binding prediction tools and recommendations to increase prediction sensitivity to extend the number of potential epitopes applicable as targets for immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fiona完成签到,获得积分10
2秒前
科研通AI5应助没有答案采纳,获得10
3秒前
3秒前
4秒前
JamesPei应助渴死的鱼采纳,获得10
4秒前
wjn完成签到,获得积分10
7秒前
7秒前
123完成签到,获得积分20
8秒前
LinXin发布了新的文献求助10
8秒前
脏脏包完成签到,获得积分10
9秒前
科学家发布了新的文献求助10
9秒前
10秒前
123发布了新的文献求助30
11秒前
852应助彻底采纳,获得10
13秒前
悲伤西米露完成签到,获得积分10
15秒前
会撒娇的书白完成签到 ,获得积分10
15秒前
Huuu完成签到,获得积分10
15秒前
15秒前
Sw完成签到,获得积分20
16秒前
小小冰发布了新的文献求助10
16秒前
wzZ发布了新的文献求助10
17秒前
goblin完成签到,获得积分10
18秒前
Sw发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助JIANYOUFU采纳,获得10
21秒前
胡兔子发布了新的文献求助10
23秒前
周舟完成签到 ,获得积分10
24秒前
24秒前
小熊完成签到,获得积分10
26秒前
LinXin完成签到,获得积分10
26秒前
雾野发布了新的文献求助10
27秒前
trayheep应助LinXin采纳,获得10
30秒前
娜娜发布了新的文献求助10
30秒前
30秒前
33秒前
1222发布了新的文献求助10
34秒前
平淡尔琴完成签到,获得积分10
34秒前
橘右发布了新的文献求助10
36秒前
36秒前
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737341
求助须知:如何正确求助?哪些是违规求助? 3281206
关于积分的说明 10023621
捐赠科研通 2997922
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782237
科研通“疑难数据库(出版商)”最低求助积分说明 749762