已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online quality control of panaxatriol saponins percolation extraction using near-infrared technology

偏最小二乘回归 三七 近红外光谱 化学 萃取(化学) 色谱法 分析化学(期刊) 数学 统计 物理 医学 量子力学 病理 替代医学
作者
Rui-xue Zhong,Yujie Liu,Jun Wan,Liyang Zhu,Yun-bei Chen,Huimin Wen,Xiao-yun Duan,Xiaoling Wang,Ting-sen Wei,Chuanhong Wu,Guang-fu Feng
出处
期刊:Tropical Journal of Pharmaceutical Research [African Journals Online]
卷期号:17 (10): 2055-2055 被引量:6
标识
DOI:10.4314/tjpr.v17i10.23
摘要

Purpose: To establish a new prediction model for online quality control of the percolation extraction of panaxatriol saponins (PTS), viz, ginsenoside Rg1, ginsenoside Re and notoginsenoside R1, from notoginseng by near-infrared (NIR) technology coupled with partial least squares (PLS) analysis.Methods: Ten batches of PTS (420 samples) were collected and the constituents were determined using HPLC. The NIR spectroscopy of samples was determined using a Fourier-Transform nearinfrared spectrometer with an optical fiber transmission PbS detector. Eight sample batches were the calibration set, and two batches were the forecast set. Calibration models were established based on min-max normalization (MMN).Results: The root mean square errors of cross-validation (RMSECV) of Rg1, Re, and R1 were 0.798, 0.095, and 0.259 mg/mL, respectively. The root mean square errors of prediction (RMSEP) were 1.110, 0.496, and 0.390 mg/mL, respectively. The correlation coefficients (R2) of cross-validation were 0.9682, 0.9681, and 0.9626, respectively, while the correlation coefficients (R2) of prediction were 0.9831, 0.9198, and 0.9661, respectively.Conclusion: The results indicate that NIR is a quick and effective tool for online quality control of PTS (ginsenoside Rg1, ginsenoside Re, and notoginsenoside R1) in the percolation extraction process.Keywords: Online monitoring, Near infrared technology, Panaxatriol saponins, Partial least squares

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aaapear发布了新的文献求助30
1秒前
英姑应助Cassiel采纳,获得30
1秒前
3秒前
Zp发布了新的文献求助10
5秒前
dreamode应助111采纳,获得10
6秒前
搜集达人应助七里香采纳,获得30
7秒前
7秒前
oydent发布了新的文献求助10
7秒前
cc应助小林太郎采纳,获得30
7秒前
257完成签到,获得积分20
8秒前
8秒前
10秒前
汉堡包应助华半仙采纳,获得10
10秒前
桐桐应助喜悦采纳,获得10
10秒前
11秒前
一只科研pig完成签到 ,获得积分10
11秒前
忐忑的凉面发布了新的文献求助100
12秒前
13秒前
De_Frank123发布了新的文献求助10
13秒前
14秒前
火星上的菲鹰应助Lric采纳,获得10
14秒前
星辰坠于海应助GD采纳,获得10
15秒前
YY发布了新的文献求助10
16秒前
可爱的函函应助xrf采纳,获得10
17秒前
huikaxy发布了新的文献求助10
17秒前
喜悦完成签到,获得积分20
17秒前
cc应助小林太郎采纳,获得30
18秒前
257关注了科研通微信公众号
18秒前
彭于晏应助Zp采纳,获得30
19秒前
20秒前
21秒前
科研通AI5应助健忘数据线采纳,获得10
22秒前
一蓑烟雨任平生应助Ken采纳,获得10
23秒前
23秒前
吾儿坤发布了新的文献求助10
23秒前
25秒前
虚心醉蝶完成签到 ,获得积分10
26秒前
xieqiuen完成签到,获得积分10
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526225
求助须知:如何正确求助?哪些是违规求助? 3106584
关于积分的说明 9281078
捐赠科研通 2804174
什么是DOI,文献DOI怎么找? 1539323
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495