Remote-Sensing Image Usability Assessment Based on ResNet by Combining Edge and Texture Maps

可用性 计算机科学 人工智能 图像质量 失真(音乐) 计算机视觉 图像纹理 卷积神经网络 模式识别(心理学) 图像处理 图像(数学) 计算机网络 人机交互 放大器 带宽(计算)
作者
Lin Xu,Qiang Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1825-1834 被引量:16
标识
DOI:10.1109/jstars.2019.2914715
摘要

Authentic remote-sensing images suffer non-uniform complex distortions during acquisition, transmission, and storage. Clouds, light, and exposure also affect local quality. This paper constructs a usability-based subjective remote-sensing image dataset and gives a definition of usability for images with non-uniform distortion, where the image usability is determined by the weighted quality of image's blocks. It is difficult to extract the handcraft features from remote-sensing images with complex mixture distortion. Recently, convolutional neural network (CNN) has been introduced into blind quality assessment for images with uniform distortion, which includes feature learning and regression in one processing. In this paper, we first describe and systematically analyze the usability of remote-sensing images in detail. Then, we propose a remote-sensing image usability assessment (RSIUA) method based on a residual network by combining edge and texture maps. The score of remote-sensing image usability was obtained with the weighted averaging of the quality scores of all image blocks, and the weight of each image block was determined by its quality score. We compared the proposed method with three traditional image quality assessment methods, one CNN-based method for images with simulated distortion, and one scale-invariant feature transform-based RSIUA method. The linear correlation coefficient, Spearman's rank ordered correlation coefficient, and root-mean-squared error of experiments demonstrate that our method outperforms all five competitors. The experiments also reveal that the edge and texture maps can improve the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liubaibai2333发布了新的文献求助10
1秒前
无奈的凌寒完成签到,获得积分10
2秒前
李健应助lyj334采纳,获得10
2秒前
3秒前
XYZ发布了新的文献求助10
3秒前
lkkkkkk完成签到,获得积分20
4秒前
karL完成签到,获得积分10
4秒前
4秒前
可可发布了新的文献求助10
5秒前
Tommy完成签到,获得积分10
5秒前
5秒前
混世魔王发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
六爻发布了新的文献求助10
9秒前
10秒前
leezhen完成签到,获得积分10
10秒前
10秒前
Hoooo...发布了新的文献求助10
11秒前
11秒前
冰中完成签到,获得积分10
11秒前
12秒前
liubaibai2333完成签到,获得积分10
12秒前
13秒前
可可完成签到,获得积分10
13秒前
致行发布了新的文献求助10
14秒前
pentayouth发布了新的文献求助10
14秒前
酶没美镁发布了新的文献求助10
14秒前
oops完成签到,获得积分10
16秒前
BBQ发布了新的文献求助60
17秒前
18秒前
18秒前
小白发布了新的文献求助30
18秒前
香蕉觅云应助冰中采纳,获得10
19秒前
神勇灵松应助袖贤采纳,获得10
19秒前
丘比特应助yunsww采纳,获得10
20秒前
高兴断秋发布了新的文献求助10
21秒前
科研通AI2S应助xcc采纳,获得10
21秒前
坦率完成签到,获得积分10
21秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388