Remote-Sensing Image Usability Assessment Based on ResNet by Combining Edge and Texture Maps

可用性 计算机科学 人工智能 图像质量 失真(音乐) 计算机视觉 图像纹理 卷积神经网络 模式识别(心理学) 图像处理 图像(数学) 计算机网络 人机交互 放大器 带宽(计算)
作者
Lin Xu,Qiang Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1825-1834 被引量:16
标识
DOI:10.1109/jstars.2019.2914715
摘要

Authentic remote-sensing images suffer non-uniform complex distortions during acquisition, transmission, and storage. Clouds, light, and exposure also affect local quality. This paper constructs a usability-based subjective remote-sensing image dataset and gives a definition of usability for images with non-uniform distortion, where the image usability is determined by the weighted quality of image's blocks. It is difficult to extract the handcraft features from remote-sensing images with complex mixture distortion. Recently, convolutional neural network (CNN) has been introduced into blind quality assessment for images with uniform distortion, which includes feature learning and regression in one processing. In this paper, we first describe and systematically analyze the usability of remote-sensing images in detail. Then, we propose a remote-sensing image usability assessment (RSIUA) method based on a residual network by combining edge and texture maps. The score of remote-sensing image usability was obtained with the weighted averaging of the quality scores of all image blocks, and the weight of each image block was determined by its quality score. We compared the proposed method with three traditional image quality assessment methods, one CNN-based method for images with simulated distortion, and one scale-invariant feature transform-based RSIUA method. The linear correlation coefficient, Spearman's rank ordered correlation coefficient, and root-mean-squared error of experiments demonstrate that our method outperforms all five competitors. The experiments also reveal that the edge and texture maps can improve the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
风中道罡发布了新的文献求助10
2秒前
zhouxuefeng发布了新的文献求助10
3秒前
3秒前
兔兔要睡觉完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
7788999完成签到,获得积分10
5秒前
5秒前
勤恳的夏之完成签到,获得积分20
6秒前
6秒前
lone623应助赵文若采纳,获得10
7秒前
lone623应助赵文若采纳,获得10
7秒前
鹿茸与共发布了新的文献求助10
8秒前
万能图书馆应助AKK采纳,获得10
9秒前
西子阳发布了新的文献求助10
9秒前
10秒前
无误发布了新的文献求助10
10秒前
酷波er应助why采纳,获得10
10秒前
张文懿发布了新的文献求助10
10秒前
西子阳发布了新的文献求助10
11秒前
西子阳发布了新的文献求助10
11秒前
西子阳发布了新的文献求助10
11秒前
西子阳发布了新的文献求助10
11秒前
西子阳发布了新的文献求助10
11秒前
西子阳发布了新的文献求助10
11秒前
尽如给尽如的求助进行了留言
11秒前
李健的小迷弟应助王富贵采纳,获得30
11秒前
风趣的凝雁完成签到,获得积分10
11秒前
凶狠的山晴完成签到,获得积分20
12秒前
zjz1发布了新的文献求助10
13秒前
14秒前
abtx314发布了新的文献求助10
14秒前
Ava应助端庄的小蝴蝶采纳,获得10
15秒前
zhangyu应助积极以云采纳,获得10
15秒前
科研人发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014