Resource Usage Cost Optimization in Cloud Computing Using Machine Learning

云计算 计算机科学 云测试 粒子群优化 资源(消歧) 初始化 分布式计算 云安全计算 实时计算 机器学习 操作系统 计算机网络 程序设计语言
作者
Patryk Osypanka,Piotr Nawrocki
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 2079-2089 被引量:30
标识
DOI:10.1109/tcc.2020.3015769
摘要

Cloud computing is gaining popularity among small and medium-sized enterprises. The cost of cloud resources plays a significant role for these companies and this is why cloud resource optimization has become a very important issue. Numerous methods have been proposed to optimize cloud computing resources according to actual demand and to reduce the cost of cloud services. Such approaches mostly focus on a single factor (i.e., compute power) optimization, but this can yield unsatisfactory results in real-world cloud workloads which are multi-factor, dynamic and irregular. This article presents a novel approach which uses anomaly detection, machine learning and particle swarm optimization to achieve a cost-optimal cloud resource configuration. It is a complete solution which works in a closed loop without the need for external supervision or initialization, builds knowledge about the usage patterns of the system being optimized and filters out anomalous situations on the fly. Our solution can adapt to changes in both system load and the cloud provider’s pricing plan. It was tested in Microsoft’s cloud environment Azure using data collected from a real-life system. Experiments demonstrate that over a period of 10 months, a cost reduction of 85 percent was achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马发布了新的文献求助10
2秒前
YoYo发布了新的文献求助10
2秒前
浮游应助圆圆金采纳,获得10
3秒前
3秒前
晶晶完成签到,获得积分10
4秒前
nkdailingyun完成签到,获得积分10
4秒前
忧心的笑南应助qianyuan采纳,获得10
4秒前
科研通AI6应助qianyuan采纳,获得10
4秒前
原野完成签到,获得积分10
5秒前
深情安青应助haocheng采纳,获得10
5秒前
6秒前
古德里安鸭子完成签到,获得积分10
7秒前
搞科研发布了新的文献求助10
8秒前
浮游应助微丶尘采纳,获得10
9秒前
郭大壮完成签到,获得积分10
9秒前
9秒前
10秒前
原野发布了新的文献求助20
12秒前
方外酒中仙完成签到,获得积分10
12秒前
12秒前
seven完成签到,获得积分10
13秒前
14秒前
科研通AI6应助畅快的白枫采纳,获得30
14秒前
14秒前
刘兆亮发布了新的文献求助10
15秒前
15秒前
斯文败类应助Yi采纳,获得10
16秒前
seven发布了新的文献求助10
16秒前
英姑应助sc采纳,获得10
16秒前
17秒前
Lucas应助qianyuan采纳,获得10
18秒前
万能图书馆应助你好采纳,获得10
18秒前
闵卷发布了新的文献求助10
21秒前
李昕123完成签到 ,获得积分10
27秒前
科研通AI2S应助乐观的颦采纳,获得10
27秒前
28秒前
NZH完成签到,获得积分10
29秒前
浮游应助会幸福的采纳,获得10
29秒前
刘兆亮完成签到,获得积分10
29秒前
Whim应助zzzzzz采纳,获得40
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457576
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292352
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458636
邀请新用户注册赠送积分活动 1448632
关于科研通互助平台的介绍 1424287