Resource Usage Cost Optimization in Cloud Computing Using Machine Learning

云计算 计算机科学 云测试 粒子群优化 资源(消歧) 初始化 分布式计算 云安全计算 实时计算 机器学习 操作系统 计算机网络 程序设计语言
作者
Patryk Osypanka,Piotr Nawrocki
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 2079-2089 被引量:30
标识
DOI:10.1109/tcc.2020.3015769
摘要

Cloud computing is gaining popularity among small and medium-sized enterprises. The cost of cloud resources plays a significant role for these companies and this is why cloud resource optimization has become a very important issue. Numerous methods have been proposed to optimize cloud computing resources according to actual demand and to reduce the cost of cloud services. Such approaches mostly focus on a single factor (i.e., compute power) optimization, but this can yield unsatisfactory results in real-world cloud workloads which are multi-factor, dynamic and irregular. This article presents a novel approach which uses anomaly detection, machine learning and particle swarm optimization to achieve a cost-optimal cloud resource configuration. It is a complete solution which works in a closed loop without the need for external supervision or initialization, builds knowledge about the usage patterns of the system being optimized and filters out anomalous situations on the fly. Our solution can adapt to changes in both system load and the cloud provider’s pricing plan. It was tested in Microsoft’s cloud environment Azure using data collected from a real-life system. Experiments demonstrate that over a period of 10 months, a cost reduction of 85 percent was achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平常的迎夏完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
隐形曼青应助秋澄采纳,获得10
2秒前
2秒前
4秒前
xzn发布了新的文献求助10
4秒前
hahaha发布了新的文献求助10
4秒前
4秒前
青云冰城发布了新的文献求助10
5秒前
oo发布了新的文献求助10
5秒前
5秒前
不倒翁37发布了新的文献求助10
6秒前
cmdan完成签到,获得积分10
6秒前
蓝溺完成签到,获得积分10
7秒前
邵小庆发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
桐桐应助cc采纳,获得10
9秒前
等待吐司应助欢喜代萱采纳,获得10
9秒前
ss完成签到 ,获得积分10
9秒前
刘乐发布了新的文献求助10
9秒前
柳觅夏发布了新的文献求助10
9秒前
Lucas应助芜湖芜湖采纳,获得10
10秒前
HOOW发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
13秒前
cytheria发布了新的文献求助10
13秒前
时间的过客完成签到,获得积分10
13秒前
HesperLxy发布了新的文献求助10
13秒前
SciGPT应助天天玩采纳,获得10
15秒前
15秒前
NexusExplorer应助cc采纳,获得10
15秒前
李爱国应助千尺焰采纳,获得10
16秒前
666发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961