A demand index for recreational ecosystem services associated with urban parks in Beijing, China

北京 娱乐 城市化 地理 接见者模式 索引(排版) 分布(数学) 人口 中国 问卷调查 旅游 业务 支付意愿 环境资源管理 经济增长 环境科学 经济 环境卫生 生态学 社会学 万维网 考古 微观经济学 生物 程序设计语言 社会科学 数学分析 数学 医学 计算机科学
作者
Ranhao Sun,Fen Li,Liding Chen
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:251: 109612-109612 被引量:32
标识
DOI:10.1016/j.jenvman.2019.109612
摘要

Good planning for urban parks requires an analysis of the quantitative relationship between the distribution of an urban population and the demand for recreational ecosystem services (RES). A barrier to RES quantification is the lack of connections between survey materials and spatial data. This study developed a logistic regression model for the demand for RES associated with urban parks based on the characteristics of individual visitor and their willingness to visit parks. The model was fitted by a questionnaire survey completed by 4096 park visitors and was used to predict the RES demand in 317 sub-districts of Beijing. Results showed that: (1) park visitors rated sightseeing as the most important, followed by jogging, boating, partying, cycling, and fishing in Beijing's parks; (2) high-income and older residents had higher willingness to visit the parks than did low-income and younger park visitors; (3) the fringe areas between the urban and rural regions showed a relatively low demand index for RES. This study exhibits a feasible method to predict RES demand based on surveys and statistical data. Our research suggests that improving park planning necessitates developing a diverse recreational infrastructure, a tradeoff among different stakeholders, and spatial optimization for sustainable urban development. The results provide a potential tool that can be used to assess the balance of RES in a scenario of urbanization and population growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助叶思言采纳,获得10
刚刚
Oxygen完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
上上签完成签到,获得积分10
3秒前
4秒前
5秒前
111完成签到,获得积分10
6秒前
mmol发布了新的文献求助10
6秒前
7秒前
顾矜应助超帅的怡采纳,获得10
7秒前
8秒前
JamesPei应助gdh采纳,获得10
9秒前
9秒前
科研通AI5应助康帅傅采纳,获得10
9秒前
9秒前
怡然乐巧完成签到,获得积分10
10秒前
踏实啤酒发布了新的文献求助10
11秒前
只剩下55完成签到,获得积分10
11秒前
Jasper应助SUS采纳,获得10
13秒前
PGS发布了新的文献求助30
13秒前
shencheng完成签到,获得积分10
14秒前
gdh完成签到,获得积分10
14秒前
科研通AI2S应助诚心千筹采纳,获得10
14秒前
we发布了新的文献求助10
14秒前
14秒前
14秒前
积极乐安发布了新的文献求助10
15秒前
陌上花开完成签到,获得积分10
16秒前
悦耳的三毒完成签到,获得积分10
17秒前
整齐的冰真完成签到,获得积分10
17秒前
彭于晏应助严笑容采纳,获得10
18秒前
gdh发布了新的文献求助10
19秒前
20秒前
英姑应助qitengzhu采纳,获得10
21秒前
人机灵完成签到 ,获得积分10
22秒前
23秒前
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794