Predicting Thermophilic Proteins by Machine Learning

支持向量机 人工智能 嗜热菌 计算机科学 模式识别(心理学) 刀切重采样 机器学习 主成分分析 数据挖掘 数学 化学 统计 生物化学 估计员
作者
Xianfang Wang,Peng Gao,Yifeng Liu,Hongfei Li,Lu Fan
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:15 (5): 493-502 被引量:95
标识
DOI:10.2174/1574893615666200207094357
摘要

Background: Thermophilic proteins can maintain good activity under high temperature, therefore, it is important to study thermophilic proteins for the thermal stability of proteins. Objective: In order to solve the problem of low precision and low efficiency in predicting thermophilic proteins, a prediction method based on feature fusion and machine learning was proposed in this paper. Methods: For the selected thermophilic data sets, firstly, the thermophilic protein sequence was characterized based on feature fusion by the combination of g-gap dipeptide, entropy density and autocorrelation coefficient. Then, Kernel Principal Component Analysis (KPCA) was used to reduce the dimension of the expressed protein sequence features in order to reduce the training time and improve efficiency. Finally, the classification model was designed by using the classification algorithm. Results: A variety of classification algorithms was used to train and test on the selected thermophilic dataset. By comparison, the accuracy of the Support Vector Machine (SVM) under the jackknife method was over 92%. The combination of other evaluation indicators also proved that the SVM performance was the best. Conclusion: Because of choosing an effectively feature representation method and a robust classifier, the proposed method is suitable for predicting thermophilic proteins and is superior to most reported methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TobyZhou发布了新的文献求助20
1秒前
李爱国应助JJJHHHQQQ采纳,获得10
1秒前
面朝大海完成签到,获得积分10
2秒前
2秒前
抗体药物偶联完成签到,获得积分10
2秒前
Xxynysmhxs完成签到 ,获得积分10
2秒前
3秒前
搜集达人应助由南向北采纳,获得10
4秒前
4秒前
QP34发布了新的文献求助10
5秒前
5秒前
张口结舌的果实完成签到,获得积分10
6秒前
丘比特应助小小王采纳,获得10
6秒前
8秒前
Lex完成签到 ,获得积分10
9秒前
CCCC发布了新的文献求助10
9秒前
11秒前
花痴的冰蓝发布了新的文献求助200
12秒前
务实鞅完成签到 ,获得积分10
15秒前
打打应助科研通管家采纳,获得10
16秒前
闲庭发布了新的文献求助10
16秒前
慕青应助科研通管家采纳,获得30
16秒前
16秒前
mhl11应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
mhl11应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
mhl11应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
hwljkby完成签到,获得积分10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291870
求助须知:如何正确求助?哪些是违规求助? 2928327
关于积分的说明 8436513
捐赠科研通 2600243
什么是DOI,文献DOI怎么找? 1418956
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642834