Quantifying Mechanical Properties of Automotive Steels with Deep Learning Based Computer Vision Algorithms

缩进 材料科学 变形(气象学) 曲面(拓扑) 焊接 人工神经网络 汽车工业 拉伸试验 极限抗拉强度 复合材料 计算机科学 人工智能 几何学 工程类 数学 航空航天工程
作者
Ehsan Javaheri,Verdiana Kumala,Alireza Javaheri,Reza Rawassizadeh,Janot Lubritz,Benjamin Graf,Michael Rethmeier
出处
期刊:Metals [Multidisciplinary Digital Publishing Institute]
卷期号:10 (2): 163-163 被引量:25
标识
DOI:10.3390/met10020163
摘要

This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂真完成签到,获得积分10
8秒前
冷酷的啤酒完成签到,获得积分10
13秒前
14秒前
ding7862完成签到,获得积分10
14秒前
luoluo完成签到,获得积分10
15秒前
dldldl完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
韭菜盒子发布了新的文献求助10
20秒前
khan完成签到,获得积分10
21秒前
清脆的靖仇应助xiaowang采纳,获得10
24秒前
英俊的铭应助韭菜盒子采纳,获得10
24秒前
松柏完成签到 ,获得积分10
25秒前
Lucky.完成签到 ,获得积分0
27秒前
玩命的外套完成签到,获得积分10
33秒前
nimonimo完成签到,获得积分10
33秒前
阿尔法贝塔完成签到 ,获得积分10
34秒前
luz完成签到,获得积分10
35秒前
35秒前
jiabu完成签到 ,获得积分10
37秒前
看文献完成签到,获得积分0
37秒前
贼吖发布了新的文献求助100
40秒前
倪小呆完成签到 ,获得积分10
41秒前
41秒前
xczhu完成签到,获得积分10
44秒前
46秒前
和谐谷蕊完成签到,获得积分10
48秒前
机智的孤兰完成签到 ,获得积分10
50秒前
tclouds完成签到 ,获得积分10
50秒前
tszjw168发布了新的文献求助10
51秒前
群山完成签到 ,获得积分10
52秒前
w婷完成签到 ,获得积分10
53秒前
CDI和LIB完成签到,获得积分10
53秒前
玉崟完成签到 ,获得积分10
54秒前
dax大雄完成签到 ,获得积分10
56秒前
菠萝吹雪完成签到,获得积分10
58秒前
迷途的羔羊完成签到 ,获得积分10
59秒前
Becky完成签到 ,获得积分10
1分钟前
scott_zip完成签到 ,获得积分10
1分钟前
呆萌星星完成签到,获得积分10
1分钟前
obaica完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960172
求助须知:如何正确求助?哪些是违规求助? 3506308
关于积分的说明 11129009
捐赠科研通 3238489
什么是DOI,文献DOI怎么找? 1789751
邀请新用户注册赠送积分活动 871889
科研通“疑难数据库(出版商)”最低求助积分说明 803095