Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential

材料科学 热的 热膨胀 统计物理学 熵(时间箭头) 热力学 物理
作者
Fu‐Zhi Dai,Bo Wen,Yinjie Sun,Huimin Xiang,Yanchun Zhou
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:43: 168-174 被引量:178
标识
DOI:10.1016/j.jmst.2020.01.005
摘要

Abstract High entropy materials (HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work, we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential (DLP) for high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C is fitted with the prediction error in energy and force being 9.4 meV/atom and 217 meV/A, respectively. The reliability and generality of the DLP are affirmed, since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC (TM = Ti, Zr, Hf, Nb and Ta). Lattice constants (increase from 4.5707 A to 4.6727 A), thermal expansion coefficients (increase from 7.85×10-6 K-1 to 10.58×10-6 K-1), phonon thermal conductivities (decrease from 2.02 W·m-1·K-1 to 0.95 W·m-1·K-1), and elastic properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C in temperature ranging from 0 °C to 2400 °C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
科研通AI2S应助yuyull采纳,获得10
2秒前
2秒前
bkagyin应助虚幻的以蓝采纳,获得10
3秒前
微糖发布了新的文献求助10
3秒前
娃哈哈发布了新的文献求助10
3秒前
2810527600完成签到,获得积分10
4秒前
畅快代亦完成签到,获得积分10
5秒前
赵维雪发布了新的文献求助10
5秒前
sunyuhao完成签到,获得积分10
5秒前
星辰完成签到,获得积分10
6秒前
华仔应助白翊辰采纳,获得10
7秒前
7秒前
yy完成签到,获得积分10
8秒前
9秒前
jorjames完成签到,获得积分10
10秒前
归仔发布了新的文献求助10
12秒前
12秒前
赘婿应助赵维雪采纳,获得10
12秒前
Aries发布了新的文献求助10
13秒前
maomao关注了科研通微信公众号
14秒前
14秒前
15秒前
大脸兔狲完成签到,获得积分10
15秒前
微糖完成签到,获得积分10
15秒前
扶摇发布了新的文献求助10
17秒前
感动归尘发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
AR完成签到,获得积分10
20秒前
衍乔发布了新的文献求助20
21秒前
刘66完成签到,获得积分10
23秒前
eggbasten发布了新的文献求助10
24秒前
27秒前
28秒前
半山完成签到,获得积分10
28秒前
胡琰彦发布了新的文献求助100
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154