Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential

材料科学 热的 热膨胀 统计物理学 熵(时间箭头) 热力学 物理
作者
Fu‐Zhi Dai,Bo Wen,Yinjie Sun,Huimin Xiang,Yanchun Zhou
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:43: 168-174 被引量:178
标识
DOI:10.1016/j.jmst.2020.01.005
摘要

Abstract High entropy materials (HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work, we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential (DLP) for high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C is fitted with the prediction error in energy and force being 9.4 meV/atom and 217 meV/A, respectively. The reliability and generality of the DLP are affirmed, since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC (TM = Ti, Zr, Hf, Nb and Ta). Lattice constants (increase from 4.5707 A to 4.6727 A), thermal expansion coefficients (increase from 7.85×10-6 K-1 to 10.58×10-6 K-1), phonon thermal conductivities (decrease from 2.02 W·m-1·K-1 to 0.95 W·m-1·K-1), and elastic properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C in temperature ranging from 0 °C to 2400 °C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
random完成签到,获得积分10
1秒前
1秒前
果果瑞宁完成签到,获得积分10
1秒前
2秒前
机智小虾米完成签到,获得积分20
2秒前
goldenfleece完成签到,获得积分10
3秒前
科研通AI2S应助学者采纳,获得10
3秒前
小杨完成签到,获得积分10
4秒前
sutharsons应助科研通管家采纳,获得30
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Eric_Lee2000应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
王子完成签到,获得积分10
6秒前
李繁蕊发布了新的文献求助10
7秒前
诚心的大碗应助明理念桃采纳,获得20
7秒前
8秒前
meng完成签到,获得积分10
8秒前
学者完成签到,获得积分10
8秒前
英俊的铭应助愉快盼曼采纳,获得10
9秒前
9秒前
小媛完成签到 ,获得积分10
10秒前
学术小白完成签到,获得积分20
10秒前
赘婿应助xiaomeng采纳,获得10
10秒前
Khr1stINK发布了新的文献求助10
10秒前
清新的苑博完成签到,获得积分10
10秒前
11秒前
果果瑞宁发布了新的文献求助10
12秒前
阿美发布了新的文献求助30
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808