Flow control in a laminate capillary-driven microfluidic device

微流控 层流 毛细管作用 流量控制(数据) 流量(数学) 体积流量 流体学 流动聚焦 材料科学 机械 流速 明渠流量 毛细管数 频道(广播) 机械工程 计算机科学 纳米技术 复合材料 工程类 电气工程 物理 计算机网络
作者
Ilhoon Jang,Hyunwoong Kang,Simon Song,David S. Dandy,Brian J. Geiss,Charles S. Henry
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:146 (6): 1932-1939 被引量:43
标识
DOI:10.1039/d0an02279a
摘要

Capillary-driven microfluidic devices are of significant interest for on-site analysis because they do not require external pumps and can be made from inexpensive materials. Among capillary-driven devices, those made from paper and polyester film are among the most common and have been used in a wide array of applications. However, since capillary forces are the only driving force, flow is difficult to control, and passive flow control methods such as changing the geometry must be used to accomplish various analytical applications. This study presents several new flow control methods that can be utilized in a laminate capillary-driven microfluidic device to increase available functionality. First, we introduce push and burst valve systems that can stop and start flow. These valves can stop flow for >30 min and be opened by either pressing the channel or inflowing other fluids to the valve region. Next, we propose flow control methods for Y-shaped channels that enable more functions. In one example, we demonstrate the ability to accurately control concentration to create laminar, gradient, and fully mixed flows. In a second example, flow velocity in the main channel is controlled by adjusting the length of the inlet channel. In addition, the flow velocity is constant as the inlet length increases. Finally, the flow velocity in the Y-shaped device as a function of channel height and fluid properties such as viscosity and surface tension was examined. As in previous studies on capillary-driven channels, the flow rate was affected by each parameter. The fluidic control tools presented here will enable new designs and functions for low cost point of need assays across a variety of fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzz发布了新的文献求助10
刚刚
踏实谷蓝发布了新的文献求助10
2秒前
木悠发布了新的文献求助10
2秒前
向晚生烟完成签到,获得积分10
3秒前
考虑考虑发布了新的文献求助10
4秒前
小景完成签到,获得积分10
4秒前
4秒前
wjj发布了新的文献求助10
4秒前
汉堡包应助淡定的半梦采纳,获得10
5秒前
脑洞疼应助一所悬命采纳,获得10
5秒前
甘乐完成签到,获得积分10
6秒前
7秒前
7秒前
luyuhao3完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
BareBear应助甜蜜的傲蕾采纳,获得10
9秒前
11完成签到,获得积分10
10秒前
Laughter完成签到,获得积分10
10秒前
10秒前
情怀应助小淇采纳,获得10
11秒前
11秒前
钙片儿完成签到,获得积分10
12秒前
12秒前
11发布了新的文献求助10
12秒前
kinlin应助超帅无色采纳,获得10
12秒前
Laughter发布了新的文献求助10
13秒前
百里如雪完成签到,获得积分10
13秒前
13秒前
酷酷宛发布了新的文献求助10
13秒前
乙醇发布了新的文献求助10
14秒前
Phyllis发布了新的文献求助10
14秒前
00000发布了新的文献求助10
14秒前
Jolene完成签到 ,获得积分10
15秒前
高巧德芙完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
zdz发布了新的文献求助10
16秒前
执着的岂愈完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158