Flow control in a laminate capillary-driven microfluidic device

微流控 层流 毛细管作用 流量控制(数据) 流量(数学) 体积流量 流体学 流动聚焦 材料科学 机械 流速 明渠流量 毛细管数 频道(广播) 机械工程 计算机科学 纳米技术 复合材料 工程类 电气工程 物理 计算机网络
作者
Ilhoon Jang,Hyunwoong Kang,Simon Song,David S. Dandy,Brian J. Geiss,Charles S. Henry
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:146 (6): 1932-1939 被引量:43
标识
DOI:10.1039/d0an02279a
摘要

Capillary-driven microfluidic devices are of significant interest for on-site analysis because they do not require external pumps and can be made from inexpensive materials. Among capillary-driven devices, those made from paper and polyester film are among the most common and have been used in a wide array of applications. However, since capillary forces are the only driving force, flow is difficult to control, and passive flow control methods such as changing the geometry must be used to accomplish various analytical applications. This study presents several new flow control methods that can be utilized in a laminate capillary-driven microfluidic device to increase available functionality. First, we introduce push and burst valve systems that can stop and start flow. These valves can stop flow for >30 min and be opened by either pressing the channel or inflowing other fluids to the valve region. Next, we propose flow control methods for Y-shaped channels that enable more functions. In one example, we demonstrate the ability to accurately control concentration to create laminar, gradient, and fully mixed flows. In a second example, flow velocity in the main channel is controlled by adjusting the length of the inlet channel. In addition, the flow velocity is constant as the inlet length increases. Finally, the flow velocity in the Y-shaped device as a function of channel height and fluid properties such as viscosity and surface tension was examined. As in previous studies on capillary-driven channels, the flow rate was affected by each parameter. The fluidic control tools presented here will enable new designs and functions for low cost point of need assays across a variety of fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LOqqmZ发布了新的文献求助10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
kilig应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
清心淡如水完成签到,获得积分10
1秒前
Hao应助命运的X号采纳,获得10
2秒前
3秒前
4秒前
哭泣恋风完成签到 ,获得积分10
4秒前
zhizhzihzih完成签到,获得积分10
4秒前
4秒前
2568269431完成签到 ,获得积分10
5秒前
panzer发布了新的文献求助10
5秒前
5秒前
6秒前
smile发布了新的文献求助10
6秒前
7秒前
酷炫蚂蚁发布了新的文献求助10
7秒前
7秒前
Andy_Cheung完成签到,获得积分10
7秒前
feng完成签到,获得积分10
8秒前
maomao发布了新的文献求助10
8秒前
leena完成签到,获得积分10
8秒前
8秒前
青衣北风发布了新的文献求助10
9秒前
feng发布了新的文献求助10
9秒前
guygun发布了新的文献求助10
12秒前
小灰灰完成签到,获得积分10
13秒前
13秒前
海鸥海鸥发布了新的文献求助10
14秒前
青衣北风完成签到,获得积分10
14秒前
16秒前
MasterE完成签到,获得积分10
17秒前
我的小伙伴应助feng采纳,获得10
17秒前
善学以致用应助feng采纳,获得10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824