清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles

亚型 癌症 肺癌 计算生物学 生物 肿瘤微环境 过度诊断 甲状腺乳突癌 CDKN2A 转录组 癌症研究 反褶积 精密医学 甲状腺癌 间质细胞 病理 医学 基因 遗传学 计算机科学 基因表达 算法 程序设计语言
作者
Li Wang,Robert Sebra,John P. Sfakianos,Kimaada Allette,Wenhui Wang,Seungyeul Yoo,Nina Bhardwaj,Eric E. Schadt,Xin Yao,Matthew D. Galsky,Jun Zhu
出处
期刊:Genome Medicine [BioMed Central]
卷期号:12 (1) 被引量:40
标识
DOI:10.1186/s13073-020-0720-0
摘要

Abstract Background Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. Methods We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. Results DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. Conclusions DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
9秒前
刘刘完成签到 ,获得积分10
12秒前
雪山飞龙完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助20
17秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
38秒前
47秒前
量子星尘发布了新的文献求助10
49秒前
坚强白凝发布了新的文献求助10
53秒前
顾矜应助坚强白凝采纳,获得10
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
badbaby完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
1分钟前
胡可完成签到 ,获得积分10
1分钟前
馅饼完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
优美的冰巧完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
彭于晏应助kkj采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
坚强白凝发布了新的文献求助10
2分钟前
情怀应助坚强白凝采纳,获得10
2分钟前
Huong完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
世隐发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
bc应助cadcae采纳,获得30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666414
求助须知:如何正确求助?哪些是违规求助? 3225446
关于积分的说明 9763022
捐赠科研通 2935282
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188