A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles

亚型 癌症 肺癌 计算生物学 生物 肿瘤微环境 过度诊断 甲状腺乳突癌 CDKN2A 转录组 癌症研究 反褶积 精密医学 甲状腺癌 间质细胞 病理 医学 基因 遗传学 计算机科学 基因表达 算法 程序设计语言
作者
Li Wang,Robert Sebra,John P. Sfakianos,Kimaada Allette,Wenhui Wang,Seungyeul Yoo,Nina Bhardwaj,Eric E. Schadt,Xin Yao,Matthew D. Galsky,Jun Zhu
出处
期刊:Genome Medicine [Springer Nature]
卷期号:12 (1) 被引量:40
标识
DOI:10.1186/s13073-020-0720-0
摘要

Abstract Background Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. Methods We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. Results DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. Conclusions DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kekeji完成签到 ,获得积分10
刚刚
刚刚
AAA完成签到,获得积分20
1秒前
丘比特应助合适面包采纳,获得10
1秒前
漠之梦完成签到,获得积分20
1秒前
晨芒完成签到,获得积分10
2秒前
2秒前
坚强的小笼包完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
谦让的小甜瓜完成签到,获得积分20
4秒前
萧水白发布了新的文献求助100
4秒前
Celine完成签到 ,获得积分20
4秒前
4秒前
sxiao18应助沐沐采纳,获得10
5秒前
牛奶和发布了新的文献求助10
5秒前
6秒前
fagfagsf发布了新的文献求助10
6秒前
王俊完成签到,获得积分20
6秒前
单薄怜寒完成签到 ,获得积分10
6秒前
林lin完成签到 ,获得积分10
6秒前
科研通AI2S应助无尘采纳,获得10
7秒前
科研通AI2S应助无尘采纳,获得10
7秒前
科研通AI2S应助无尘采纳,获得10
7秒前
Nano发布了新的文献求助10
8秒前
平常的无极完成签到,获得积分10
8秒前
Liu完成签到,获得积分20
8秒前
当道不发布了新的文献求助10
8秒前
8秒前
Hannahcx发布了新的文献求助10
8秒前
wzzzzzy完成签到,获得积分10
9秒前
王俊发布了新的文献求助10
9秒前
None完成签到,获得积分10
9秒前
小梦完成签到,获得积分10
9秒前
zky17715002完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI2S应助风驻云停采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567