A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles

亚型 癌症 肺癌 计算生物学 生物 肿瘤微环境 过度诊断 甲状腺乳突癌 CDKN2A 转录组 癌症研究 反褶积 精密医学 甲状腺癌 间质细胞 病理 医学 基因 遗传学 计算机科学 基因表达 算法 程序设计语言
作者
Li Wang,Robert Sebra,John P. Sfakianos,Kimaada Allette,Wenhui Wang,Seungyeul Yoo,Nina Bhardwaj,Eric E. Schadt,Xin Yao,Matthew D. Galsky,Jun Zhu
出处
期刊:Genome Medicine [BioMed Central]
卷期号:12 (1) 被引量:40
标识
DOI:10.1186/s13073-020-0720-0
摘要

Abstract Background Patient stratification based on molecular subtypes is an important strategy for cancer precision medicine. Deriving clinically informative cancer molecular subtypes from transcriptomic data generated on whole tumor tissue samples is a non-trivial task, especially given the various non-cancer cellular elements intertwined with cancer cells in the tumor microenvironment. Methods We developed a computational deconvolution method, DeClust, that stratifies patients into subtypes based on cancer cell-intrinsic signals identified by distinguishing cancer-type-specific signals from non-cancer signals in bulk tumor transcriptomic data. DeClust differs from most existing methods by directly incorporating molecular subtyping of solid tumors into the deconvolution process and outputting molecular subtype-specific tumor reference profiles for the cohort rather than individual tumor profiles. In addition, DeClust does not require reference expression profiles or signature matrices as inputs and estimates cancer-type-specific microenvironment signals from bulk tumor transcriptomic data. Results DeClust was evaluated on both simulated data and 13 solid tumor datasets from The Cancer Genome Atlas (TCGA). DeClust performed among the best, relative to existing methods, for estimation of cellular composition. Compared to molecular subtypes reported by TCGA or other similar approaches, the subtypes generated by DeClust had higher correlations with cancer-intrinsic genomic alterations (e.g., somatic mutations and copy number variations) and lower correlations with tumor purity. While DeClust-identified subtypes were not more significantly associated with survival in general, DeClust identified a poor prognosis subtype of clear cell renal cancer, papillary renal cancer, and lung adenocarcinoma, all of which were characterized by CDKN2A deletions. As a reference profile-free deconvolution method, the tumor-type-specific stromal profiles and cancer cell-intrinsic subtypes generated by DeClust were supported by single-cell RNA sequencing data. Conclusions DeClust is a useful tool for cancer cell-intrinsic molecular subtyping of solid tumors. DeClust subtypes, together with the tumor-type-specific stromal profiles generated by this pan-cancer study, may lead to mechanistic and clinical insights across multiple tumor types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一丁点可爱完成签到,获得积分10
1秒前
万能图书馆应助清秀代天采纳,获得30
1秒前
Diana发布了新的文献求助10
1秒前
di完成签到,获得积分10
2秒前
徐逊发布了新的文献求助10
3秒前
3秒前
pumpkin完成签到,获得积分10
4秒前
ludov完成签到,获得积分10
4秒前
4秒前
cy完成签到,获得积分10
5秒前
6秒前
6秒前
zorro3574完成签到,获得积分10
7秒前
Xdz完成签到 ,获得积分10
8秒前
忐忑的凌丝完成签到,获得积分10
8秒前
8秒前
个性的翠芙完成签到 ,获得积分10
8秒前
皮蛋瘦肉周完成签到,获得积分10
9秒前
9秒前
SYLH应助木木采纳,获得30
9秒前
ZJR发布了新的文献求助10
9秒前
goodsheep完成签到 ,获得积分10
9秒前
Dr_Zhang完成签到,获得积分10
10秒前
烟花应助科研通管家采纳,获得30
10秒前
852应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
白桃乌龙应助科研通管家采纳,获得10
11秒前
韩博完成签到,获得积分10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
11秒前
伍绮彤完成签到,获得积分10
11秒前
11秒前
雨寒发布了新的文献求助20
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144