Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation

磁制冷 磁场 凝聚态物理 磁化 场依赖性 领域(数学) 物理 材料科学 数学 量子力学 纯数学
作者
Hu Zhang,Xing Cheng-Fen,Long Ke-Wen,Xiao Ya-Ning,Kun Tao,Wang Li-chen,Yi Long
出处
期刊:Chinese Physics [Science Press]
卷期号:67 (20): 207501-207501 被引量:6
标识
DOI:10.7498/aps.67.20180927
摘要

The study on the field dependence of magnetocaloric effect (MCE) is considered to be of fundamental and practical importance, since it not only guides us in understanding and optimizing the MCE, but also helps us estimate the MCE for higher magnetic field which is not available in some laboratories. The magnetic field (0H) dependence of magnetic entropy change (△SM) has been studied extensively in many materials with second-order magnetic transition. However, the field dependence of MCE for first-order magnetic transition (FOMT) materials has not been sufficiently studied due to their complexity and diversity. In the present work, polycrystalline Mn0.6Fe0.4NiSi0.5Ge0.5, Ni50Mn34Co2Sn14, and LaFe11.7Si1.3 compounds with FOMT are prepared, and the magnetic and magnetocaloric properties are investigated systematically. In order to avoid a spurious △SM, the M-0H curves are measured in a loop process. The M-0H curves are corrected by taking into account the demagnetization effect, i.e. Hint=Hext-NdM. It is found that the -△SM follows a linear relationship -△SM=-△S0 +0H with the variation of magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 compound when 0H 1 T. In addition, it is also noted that the △SM is approximately proportional to the square of 0H at low field. The origin of this linear relationship between △SM and 0H at high field and the deviation at low field are discussed by numerically analyzing the Maxwell relation. In addition to the △SM peak value, it is found that other △SM values at different temperatures also follow the linear relation at high field by performing the same numerical analysis. Moreover, it is found that the fitted △SM curve matches the experimental data very well. This result indicates that the linear relationship between △SM and 0H could be utilized to predict the △SM for higher magnetic field change when the field is lower than the saturation field. The applicability of this linear relationship is also verified in other systems with first-order magnetostructural transformation, such as Ni50Mn34Co2Sn14. However, it fails to describe the field dependence of △SM in LaFe11.7Si1.3, which exhibits a strong field dependence of transition temperature. Consequently, our study reveals that a linear dependence of △SM on 0H could occur in magnetostructural transition materials, which show the field independence of transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的磬发布了新的文献求助10
1秒前
zhy发布了新的文献求助10
2秒前
害羞的败发布了新的文献求助80
3秒前
任性雁风完成签到,获得积分10
3秒前
mwm621完成签到,获得积分10
3秒前
suodeheng完成签到,获得积分20
5秒前
du完成签到 ,获得积分0
7秒前
7秒前
胡洁媛关注了科研通微信公众号
7秒前
丘比特应助ht采纳,获得30
8秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
时闲应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得30
10秒前
时闲应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得40
11秒前
orixero应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
Lucas应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
Orange应助叶叶采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965897
求助须知:如何正确求助?哪些是违规求助? 3511264
关于积分的说明 11157003
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793159
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278