亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hierarchical Graph Convolution Network for Representation Learning of Gene Expression Data

可解释性 计算机科学 人工智能 图形核 特征学习 图形 维数之咒 机器学习 特征(语言学) 半监督学习 模式识别(心理学) 核方法 数据挖掘 理论计算机科学 支持向量机 核主成分分析 语言学 哲学
作者
Kaiwen Tan,Weixian Huang,Xiaofeng Liu,Jinlong Hu,Shoubin Dong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 3219-3229 被引量:5
标识
DOI:10.1109/jbhi.2021.3052008
摘要

The curse of dimensionality, which is caused by high-dimensionality and low-sample-size, is a major challenge in gene expression data analysis. However, the real situation is even worse: labelling data is laborious and time-consuming, so only a small part of the limited samples will be labelled. Having such few labelled samples further increases the difficulty of training deep learning models. Interpretability is an important requirement in biomedicine. Many existing deep learning methods are trying to provide interpretability, but rarely apply to gene expression data. Recent semi-supervised graph convolution network methods try to address these problems by smoothing the label information over a graph. However, to the best of our knowledge, these methods only utilize graphs in either the feature space or sample space, which restrict their performance. We propose a transductive semi-supervised representation learning method called a hierarchical graph convolution network (HiGCN) to aggregate the information of gene expression data in both feature and sample spaces. HiGCN first utilizes external knowledge to construct a feature graph and a similarity kernel to construct a sample graph. Then, two spatial-based GCNs are used to aggregate information on these graphs. To validate the model's performance, synthetic and real datasets are provided to lend empirical support. Compared with two recent models and three traditional models, HiGCN learns better representations of gene expression data, and these representations improve the performance of downstream tasks, especially when the model is trained on a few labelled samples. Important features can be extracted from our model to provide reliable interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国家一级啃大瓜表演艺术家完成签到,获得积分10
3秒前
6秒前
cc发布了新的文献求助10
11秒前
14秒前
heqizheng完成签到 ,获得积分10
15秒前
18秒前
19秒前
25秒前
25秒前
....发布了新的文献求助10
25秒前
嘟嘟嘟嘟完成签到 ,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
伍美华完成签到,获得积分20
27秒前
JamesPei应助哈哈采纳,获得10
28秒前
小马甲应助忐忑的松鼠采纳,获得100
29秒前
伍美华发布了新的文献求助10
31秒前
坦率邪欢发布了新的文献求助10
32秒前
沙与沫完成签到 ,获得积分10
32秒前
香蕉觅云应助汤姆采纳,获得10
33秒前
37秒前
ferritin完成签到 ,获得积分10
38秒前
霸气的思柔完成签到,获得积分10
39秒前
Cheny完成签到,获得积分20
40秒前
vera完成签到 ,获得积分10
41秒前
哈哈发布了新的文献求助10
43秒前
华仔应助伍美华采纳,获得10
49秒前
深情安青应助22222采纳,获得30
52秒前
53秒前
55秒前
h0jian09完成签到,获得积分10
55秒前
哈哈哈完成签到,获得积分20
56秒前
SciGPT应助....采纳,获得10
57秒前
花无双完成签到,获得积分0
58秒前
梦里贪乐发布了新的文献求助10
58秒前
霸体廉颇发布了新的文献求助10
1分钟前
1分钟前
哈哈哈关注了科研通微信公众号
1分钟前
汤姆发布了新的文献求助10
1分钟前
斯文败类应助zc采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516310
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9239912
捐赠科研通 2793645
什么是DOI,文献DOI怎么找? 1533155
邀请新用户注册赠送积分活动 712580
科研通“疑难数据库(出版商)”最低求助积分说明 707384