Deep Learning‐Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies

分割 人工智能 磁共振成像 计算机科学 生命银行 图像分割 医学 深度学习 基本事实 放射科 模式识别(心理学) 计算机视觉 生物信息学 生物
作者
Turkay Kart,Marc Fischer,Thomas Küstner,Tobias Hepp,Fabian Bamberg,Stefan Winzeck,Ben Glocker,Daniel Rueckert,Sergios Gatidis
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (6): 401-408 被引量:43
标识
DOI:10.1097/rli.0000000000000755
摘要

The aims of this study were to train and evaluate deep learning models for automated segmentation of abdominal organs in whole-body magnetic resonance (MR) images from the UK Biobank (UKBB) and German National Cohort (GNC) MR imaging studies and to make these models available to the scientific community for analysis of these data sets.A total of 200 T1-weighted MR image data sets of healthy volunteers each from UKBB and GNC (400 data sets in total) were available in this study. Liver, spleen, left and right kidney, and pancreas were segmented manually on all 400 data sets, providing labeled ground truth data for training of a previously described U-Net-based deep learning framework for automated medical image segmentation (nnU-Net). The trained models were tested on all data sets using a 4-fold cross-validation scheme. Qualitative analysis of automated segmentation results was performed visually; performance metrics between automated and manual segmentation results were computed for quantitative analysis. In addition, interobserver segmentation variability between 2 human readers was assessed on a subset of the data.Automated abdominal organ segmentation was performed with high qualitative and quantitative accuracy on UKBB and GNC data. In more than 90% of data sets, no or only minor visually detectable qualitative segmentation errors occurred. Mean Dice scores of automated segmentations compared with manual reference segmentations were well higher than 0.9 for the liver, spleen, and kidneys on UKBB and GNC data and around 0.82 and 0.89 for the pancreas on UKBB and GNC data, respectively. Mean average symmetric surface distance was between 0.3 and 1.5 mm for the liver, spleen, and kidneys and between 2 and 2.2 mm for pancreas segmentation. The quantitative accuracy of automated segmentation was comparable with the agreement between 2 human readers for all organs on UKBB and GNC data.Automated segmentation of abdominal organs is possible with high qualitative and quantitative accuracy on whole-body MR imaging data acquired as part of UKBB and GNC. The results obtained and deep learning models trained in this study can be used as a foundation for automated analysis of thousands of MR data sets of UKBB and GNC and thus contribute to tackling topical and original scientific questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助hahhahahh采纳,获得10
刚刚
努力上进的小张完成签到,获得积分10
1秒前
Ava应助sdl采纳,获得10
1秒前
赵怼怼完成签到,获得积分10
2秒前
2秒前
3秒前
犹豫寒云完成签到,获得积分10
3秒前
从容问雁完成签到,获得积分10
3秒前
lyy完成签到 ,获得积分10
3秒前
喝到几点完成签到,获得积分10
3秒前
顺心从安完成签到,获得积分10
4秒前
4秒前
淡定完成签到,获得积分20
4秒前
果子完成签到,获得积分10
4秒前
savesunshine1022完成签到,获得积分10
5秒前
月桂氮卓酮完成签到,获得积分10
5秒前
直率的乐萱完成签到 ,获得积分10
5秒前
子南完成签到,获得积分10
5秒前
啦啦啦完成签到,获得积分10
5秒前
酷酷冬莲完成签到,获得积分10
6秒前
王博士完成签到,获得积分10
6秒前
excellent发布了新的文献求助10
7秒前
7秒前
7秒前
sm发布了新的文献求助10
7秒前
领导范儿应助无私语儿采纳,获得10
8秒前
8秒前
细心健柏完成签到 ,获得积分10
8秒前
是玥玥啊完成签到,获得积分10
9秒前
9秒前
Hero完成签到,获得积分10
10秒前
特安谭完成签到,获得积分10
10秒前
研友_8y2G0L发布了新的文献求助10
11秒前
予怀关注了科研通微信公众号
11秒前
鹏程完成签到,获得积分10
12秒前
12秒前
微笑笑南发布了新的文献求助10
12秒前
PDIF-CN2完成签到,获得积分10
12秒前
一万朵蝴蝶完成签到,获得积分10
13秒前
朱先生完成签到 ,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754274
求助须知:如何正确求助?哪些是违规求助? 3297792
关于积分的说明 10101009
捐赠科研通 3012402
什么是DOI,文献DOI怎么找? 1654584
邀请新用户注册赠送积分活动 788916
科研通“疑难数据库(出版商)”最低求助积分说明 753113