Combined QSAR Model and Chemical Similarity Search for Novel HMG-CoA Reductase Inhibitors for Coronary Heart Disease

数量结构-活动关系 阿托伐他汀 生物信息学 HMG-CoA还原酶 相似性(几何) 化学 计算生物学 冠心病 还原酶 立体化学 计算机科学 生物 人工智能 药理学 生物化学 医学 内科学 图像(数学) 基因
作者
David Mary Rajathei,S. Parthasarathy,Samuel Selvaraj
出处
期刊:Current Computer - Aided Drug Design [Bentham Science]
卷期号:16 (4): 473-485 被引量:4
标识
DOI:10.2174/1573409915666190904114247
摘要

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的紫蓝应助巫马尔槐采纳,获得10
刚刚
善学以致用应助芳芳采纳,获得30
1秒前
1秒前
2秒前
失忆的金鱼应助Leucalypt采纳,获得10
3秒前
忘忧发布了新的文献求助10
3秒前
科研通AI2S应助Alven采纳,获得30
3秒前
丘比特应助陈嘻嘻嘻嘻采纳,获得10
3秒前
4秒前
ZZZ发布了新的文献求助20
4秒前
4秒前
雪梅完成签到 ,获得积分10
4秒前
一指墨发布了新的文献求助10
5秒前
涂楚捷发布了新的文献求助20
5秒前
田様应助草莓采纳,获得10
5秒前
jys发布了新的文献求助10
7秒前
Lucas应助小朋友采纳,获得10
7秒前
趣多多发布了新的文献求助30
7秒前
上官问寒完成签到,获得积分10
7秒前
忘忧完成签到,获得积分10
8秒前
8秒前
9秒前
健壮问兰发布了新的文献求助10
9秒前
9秒前
zhangyt发布了新的文献求助10
10秒前
火火发布了新的文献求助10
10秒前
WYJ应助大青蛙采纳,获得10
10秒前
秃顶水箭龟完成签到,获得积分10
11秒前
虬江学者完成签到,获得积分10
11秒前
11秒前
在水一方应助WUT采纳,获得10
12秒前
13秒前
HaRd发布了新的文献求助10
13秒前
13秒前
那些年发布了新的文献求助10
14秒前
Hello应助coffee333采纳,获得10
14秒前
xu发布了新的文献求助10
14秒前
15秒前
超進化完成签到 ,获得积分10
15秒前
橙子发布了新的文献求助10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260523
求助须知:如何正确求助?哪些是违规求助? 2901713
关于积分的说明 8316694
捐赠科研通 2571240
什么是DOI,文献DOI怎么找? 1396950
科研通“疑难数据库(出版商)”最低求助积分说明 653598
邀请新用户注册赠送积分活动 632040