Combined QSAR Model and Chemical Similarity Search for Novel HMG-CoA Reductase Inhibitors for Coronary Heart Disease

数量结构-活动关系 阿托伐他汀 生物信息学 HMG-CoA还原酶 相似性(几何) 化学 计算生物学 冠心病 还原酶 立体化学 计算机科学 生物 人工智能 药理学 生物化学 医学 内科学 图像(数学) 基因
作者
David Mary Rajathei,S. Parthasarathy,Samuel Selvaraj
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:16 (4): 473-485 被引量:4
标识
DOI:10.2174/1573409915666190904114247
摘要

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海拾月完成签到,获得积分10
1秒前
自觉从筠发布了新的文献求助10
2秒前
zhangxiao完成签到,获得积分10
2秒前
科研通AI5应助落寞的易绿采纳,获得10
2秒前
2秒前
上官若男应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得30
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
wxyshare应助科研通管家采纳,获得10
3秒前
cherlie应助科研通管家采纳,获得20
3秒前
斯文败类应助邱化兴采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
chenjun7080发布了新的文献求助10
3秒前
今后应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
LPH应助科研通管家采纳,获得30
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Eva完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得30
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019