Automated measuring method based on Machine learning for optomotor response in mice

计算机科学 人工智能 度量(数据仓库) 运动(物理) 集合(抽象数据类型) 卷积神经网络 计算机视觉 方向(向量空间) 模式识别(心理学) 特征(语言学) 人工神经网络 功能(生物学) 校准 数学 数据挖掘 统计 哲学 几何学 生物 进化生物学 程序设计语言 语言学
作者
Mingsi Tong,Xinghu Yu,Junjie Shao,Zhengbo Shao,Wencong Li,Weiyang Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:418: 241-250 被引量:3
标识
DOI:10.1016/j.neucom.2020.08.009
摘要

Optomotor response (OMR) describes an innate orienting behavior for numerous kinds of model animals when the surrounding visual scene is moving, and is often used for evaluating animals’ visual function and nervous system. OMR measurements are generally performed and analyzed by skillful operators, but this manual measurement suffers from low accuracy and efficiency, which further yields unreliable and even misleading results. In this paper, we present a quantitative method to automatically measure the OMR in mice. The presented measurement method consists of a set of algorithms, e.g., convolutional neural network (CNN) to track the orientation of the mouse’s head, and a feature extraction method to measure the OMRs. Compared with existing techniques, the proposed method can measure the exact starting and ending time instants of each OMR in a video segment of a mouse motion record, based on the visual detection and analysis algorithms for mice motion, which is more precise and consistent compared to only judging the presence or absence of OMR for a whole segment of a motion record in almost all the existing OMR measuring methods. In the experiments, 21 mice (7 wt mice, 7 OPTNE50K mice, and 7 OPTNE50K + BMCs mice) with three levels of optic nerve injury treatments are performed the OMR tests. The observed statistical difference in results of the three groups of mice with different vision verifies the validity of the method. Compared with the calibration results from ophthalmological experts, the system can achieve the recognition rate of 94.89%. The proposed method also provides a quantitative and analytical alternative of the OMR behavior of mice in neuroscience and ophthalmology studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿德里亚诺完成签到,获得积分10
2秒前
2秒前
LV完成签到 ,获得积分10
3秒前
艺术家完成签到,获得积分10
3秒前
薰硝壤应助wxyllxx采纳,获得10
3秒前
5秒前
7秒前
CDI和LIB完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
光亮秋白发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
所所应助余烬22采纳,获得10
11秒前
杨榆藤完成签到,获得积分10
12秒前
12秒前
俏皮白云发布了新的文献求助10
12秒前
12秒前
mouhui发布了新的文献求助10
13秒前
赚多多得钱完成签到,获得积分10
13秒前
14秒前
夕荀完成签到,获得积分10
14秒前
宋宋发布了新的文献求助10
15秒前
Owen应助HHR123456采纳,获得10
16秒前
夕荀发布了新的文献求助10
17秒前
17秒前
WOLF发布了新的文献求助10
17秒前
光亮秋白完成签到,获得积分10
18秒前
JamesPei应助辛勤的甜瓜采纳,获得10
18秒前
卡皮巴拉发布了新的文献求助20
19秒前
薰硝壤应助wxyllxx采纳,获得10
19秒前
OAHCIL完成签到 ,获得积分10
19秒前
19秒前
wang完成签到,获得积分20
20秒前
小二郎应助dd采纳,获得10
21秒前
完美世界应助超级的语儿采纳,获得10
22秒前
宋宋完成签到,获得积分10
22秒前
斯文败类应助WOLF采纳,获得10
22秒前
Jian发布了新的文献求助10
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168294
求助须知:如何正确求助?哪些是违规求助? 2819584
关于积分的说明 7927169
捐赠科研通 2479425
什么是DOI,文献DOI怎么找? 1320833
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458