Automated measuring method based on Machine learning for optomotor response in mice

计算机科学 人工智能 度量(数据仓库) 运动(物理) 集合(抽象数据类型) 卷积神经网络 计算机视觉 方向(向量空间) 模式识别(心理学) 特征(语言学) 人工神经网络 功能(生物学) 校准 数学 数据挖掘 统计 语言学 哲学 几何学 进化生物学 生物 程序设计语言
作者
Mingsi Tong,Xinghu Yu,Junjie Shao,Zhengbo Shao,Wencong Li,Weiyang Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:418: 241-250 被引量:3
标识
DOI:10.1016/j.neucom.2020.08.009
摘要

Optomotor response (OMR) describes an innate orienting behavior for numerous kinds of model animals when the surrounding visual scene is moving, and is often used for evaluating animals’ visual function and nervous system. OMR measurements are generally performed and analyzed by skillful operators, but this manual measurement suffers from low accuracy and efficiency, which further yields unreliable and even misleading results. In this paper, we present a quantitative method to automatically measure the OMR in mice. The presented measurement method consists of a set of algorithms, e.g., convolutional neural network (CNN) to track the orientation of the mouse’s head, and a feature extraction method to measure the OMRs. Compared with existing techniques, the proposed method can measure the exact starting and ending time instants of each OMR in a video segment of a mouse motion record, based on the visual detection and analysis algorithms for mice motion, which is more precise and consistent compared to only judging the presence or absence of OMR for a whole segment of a motion record in almost all the existing OMR measuring methods. In the experiments, 21 mice (7 wt mice, 7 OPTNE50K mice, and 7 OPTNE50K + BMCs mice) with three levels of optic nerve injury treatments are performed the OMR tests. The observed statistical difference in results of the three groups of mice with different vision verifies the validity of the method. Compared with the calibration results from ophthalmological experts, the system can achieve the recognition rate of 94.89%. The proposed method also provides a quantitative and analytical alternative of the OMR behavior of mice in neuroscience and ophthalmology studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SUN发布了新的文献求助10
2秒前
2秒前
2秒前
今后应助调皮小蘑菇采纳,获得10
2秒前
3秒前
负责的花瓣完成签到,获得积分10
3秒前
宋宋发布了新的文献求助10
4秒前
暮雨完成签到,获得积分10
4秒前
白鱼neko完成签到 ,获得积分10
4秒前
心想事成发布了新的文献求助10
5秒前
SOBER刘晗发布了新的文献求助10
5秒前
爆米花应助爱你不商量采纳,获得10
5秒前
5秒前
林林林一完成签到,获得积分10
5秒前
ZunyeLiu完成签到,获得积分10
5秒前
tvt完成签到,获得积分20
5秒前
炙热芷蕊完成签到,获得积分10
7秒前
7秒前
北栀发布了新的文献求助10
7秒前
芝麻配海带完成签到,获得积分10
7秒前
8秒前
丘比特应助青山采纳,获得10
8秒前
sunrise发布了新的文献求助10
8秒前
深情安青应助清新的剑心采纳,获得10
9秒前
科目三应助cloudup233采纳,获得10
9秒前
9秒前
yang发布了新的文献求助10
10秒前
时光里发布了新的文献求助10
10秒前
tvt发布了新的文献求助10
10秒前
万能图书馆应助夏夜晚风采纳,获得10
10秒前
milagu完成签到,获得积分10
11秒前
兔子应助XH采纳,获得10
11秒前
12秒前
12秒前
12秒前
懒人完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462