Automated measuring method based on Machine learning for optomotor response in mice

计算机科学 人工智能 度量(数据仓库) 运动(物理) 集合(抽象数据类型) 卷积神经网络 计算机视觉 方向(向量空间) 模式识别(心理学) 特征(语言学) 人工神经网络 功能(生物学) 校准 数学 数据挖掘 统计 哲学 几何学 生物 进化生物学 程序设计语言 语言学
作者
Mingsi Tong,Xinghu Yu,Junjie Shao,Zhengbo Shao,Wencong Li,Weiyang Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:418: 241-250 被引量:3
标识
DOI:10.1016/j.neucom.2020.08.009
摘要

Optomotor response (OMR) describes an innate orienting behavior for numerous kinds of model animals when the surrounding visual scene is moving, and is often used for evaluating animals’ visual function and nervous system. OMR measurements are generally performed and analyzed by skillful operators, but this manual measurement suffers from low accuracy and efficiency, which further yields unreliable and even misleading results. In this paper, we present a quantitative method to automatically measure the OMR in mice. The presented measurement method consists of a set of algorithms, e.g., convolutional neural network (CNN) to track the orientation of the mouse’s head, and a feature extraction method to measure the OMRs. Compared with existing techniques, the proposed method can measure the exact starting and ending time instants of each OMR in a video segment of a mouse motion record, based on the visual detection and analysis algorithms for mice motion, which is more precise and consistent compared to only judging the presence or absence of OMR for a whole segment of a motion record in almost all the existing OMR measuring methods. In the experiments, 21 mice (7 wt mice, 7 OPTNE50K mice, and 7 OPTNE50K + BMCs mice) with three levels of optic nerve injury treatments are performed the OMR tests. The observed statistical difference in results of the three groups of mice with different vision verifies the validity of the method. Compared with the calibration results from ophthalmological experts, the system can achieve the recognition rate of 94.89%. The proposed method also provides a quantitative and analytical alternative of the OMR behavior of mice in neuroscience and ophthalmology studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808