Automated measuring method based on Machine learning for optomotor response in mice

计算机科学 人工智能 度量(数据仓库) 运动(物理) 集合(抽象数据类型) 卷积神经网络 计算机视觉 方向(向量空间) 模式识别(心理学) 特征(语言学) 人工神经网络 功能(生物学) 校准 数学 数据挖掘 统计 语言学 哲学 几何学 进化生物学 生物 程序设计语言
作者
Mingsi Tong,Xinghu Yu,Junjie Shao,Zhengbo Shao,Wencong Li,Weiyang Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:418: 241-250 被引量:3
标识
DOI:10.1016/j.neucom.2020.08.009
摘要

Optomotor response (OMR) describes an innate orienting behavior for numerous kinds of model animals when the surrounding visual scene is moving, and is often used for evaluating animals’ visual function and nervous system. OMR measurements are generally performed and analyzed by skillful operators, but this manual measurement suffers from low accuracy and efficiency, which further yields unreliable and even misleading results. In this paper, we present a quantitative method to automatically measure the OMR in mice. The presented measurement method consists of a set of algorithms, e.g., convolutional neural network (CNN) to track the orientation of the mouse’s head, and a feature extraction method to measure the OMRs. Compared with existing techniques, the proposed method can measure the exact starting and ending time instants of each OMR in a video segment of a mouse motion record, based on the visual detection and analysis algorithms for mice motion, which is more precise and consistent compared to only judging the presence or absence of OMR for a whole segment of a motion record in almost all the existing OMR measuring methods. In the experiments, 21 mice (7 wt mice, 7 OPTNE50K mice, and 7 OPTNE50K + BMCs mice) with three levels of optic nerve injury treatments are performed the OMR tests. The observed statistical difference in results of the three groups of mice with different vision verifies the validity of the method. Compared with the calibration results from ophthalmological experts, the system can achieve the recognition rate of 94.89%. The proposed method also provides a quantitative and analytical alternative of the OMR behavior of mice in neuroscience and ophthalmology studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘濮源发布了新的文献求助10
6秒前
Hello应助杨小鸿采纳,获得10
6秒前
想发好文章完成签到,获得积分10
7秒前
科研通AI6.1应助柚子采纳,获得10
8秒前
9秒前
11秒前
听闻韬声依旧完成签到 ,获得积分10
14秒前
刘振坤完成签到,获得积分10
15秒前
16秒前
16秒前
凶狠的半山完成签到,获得积分10
17秒前
JRG完成签到,获得积分20
17秒前
瞬间完成签到,获得积分10
18秒前
18秒前
20秒前
决明子完成签到 ,获得积分10
20秒前
希望天下0贩的0应助柚子采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
9℃完成签到 ,获得积分10
25秒前
单纯黑米完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助30
26秒前
勤恳洙发布了新的文献求助10
27秒前
祝笑柳完成签到,获得积分10
28秒前
秋qiu完成签到,获得积分10
28秒前
NINI完成签到 ,获得积分10
29秒前
liuzengzhang666完成签到,获得积分10
31秒前
32秒前
小巧的牛排完成签到 ,获得积分10
32秒前
所所应助柚子采纳,获得10
33秒前
33秒前
刘濮源发布了新的文献求助10
33秒前
33秒前
充电宝应助123采纳,获得10
33秒前
lljiaa应助科研通管家采纳,获得10
35秒前
Orange应助科研通管家采纳,获得10
35秒前
ylt应助科研通管家采纳,获得10
35秒前
CodeCraft应助科研通管家采纳,获得30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978