Automated measuring method based on Machine learning for optomotor response in mice

计算机科学 人工智能 度量(数据仓库) 运动(物理) 集合(抽象数据类型) 卷积神经网络 计算机视觉 方向(向量空间) 模式识别(心理学) 特征(语言学) 人工神经网络 功能(生物学) 校准 数学 数据挖掘 统计 语言学 哲学 几何学 进化生物学 生物 程序设计语言
作者
Mingsi Tong,Xinghu Yu,Junjie Shao,Zhengbo Shao,Wencong Li,Weiyang Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:418: 241-250 被引量:3
标识
DOI:10.1016/j.neucom.2020.08.009
摘要

Optomotor response (OMR) describes an innate orienting behavior for numerous kinds of model animals when the surrounding visual scene is moving, and is often used for evaluating animals’ visual function and nervous system. OMR measurements are generally performed and analyzed by skillful operators, but this manual measurement suffers from low accuracy and efficiency, which further yields unreliable and even misleading results. In this paper, we present a quantitative method to automatically measure the OMR in mice. The presented measurement method consists of a set of algorithms, e.g., convolutional neural network (CNN) to track the orientation of the mouse’s head, and a feature extraction method to measure the OMRs. Compared with existing techniques, the proposed method can measure the exact starting and ending time instants of each OMR in a video segment of a mouse motion record, based on the visual detection and analysis algorithms for mice motion, which is more precise and consistent compared to only judging the presence or absence of OMR for a whole segment of a motion record in almost all the existing OMR measuring methods. In the experiments, 21 mice (7 wt mice, 7 OPTNE50K mice, and 7 OPTNE50K + BMCs mice) with three levels of optic nerve injury treatments are performed the OMR tests. The observed statistical difference in results of the three groups of mice with different vision verifies the validity of the method. Compared with the calibration results from ophthalmological experts, the system can achieve the recognition rate of 94.89%. The proposed method also provides a quantitative and analytical alternative of the OMR behavior of mice in neuroscience and ophthalmology studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
3秒前
Dr.Tang完成签到 ,获得积分10
3秒前
闻屿完成签到,获得积分10
4秒前
lcarus完成签到 ,获得积分10
7秒前
风里等你完成签到,获得积分10
9秒前
赧赧完成签到 ,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
lcarus关注了科研通微信公众号
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Adc应助科研通管家采纳,获得10
11秒前
stiger应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
看文献完成签到,获得积分10
12秒前
12秒前
呆萌芙蓉完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
淮安石河子完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
娷静完成签到 ,获得积分10
20秒前
TGU的小马同学完成签到 ,获得积分10
20秒前
20秒前
老和山完成签到,获得积分10
22秒前
kusicfack完成签到,获得积分10
23秒前
24秒前
银河里完成签到 ,获得积分10
25秒前
空间完成签到 ,获得积分10
25秒前
安安完成签到,获得积分10
26秒前
NexusExplorer应助一个小胖子采纳,获得10
27秒前
笑点低的铁身完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
王丹靖完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715569
求助须知:如何正确求助?哪些是违规求助? 5235391
关于积分的说明 15274551
捐赠科研通 4866344
什么是DOI,文献DOI怎么找? 2612925
邀请新用户注册赠送积分活动 1563075
关于科研通互助平台的介绍 1520527