超参数
到达方向
高斯分布
贝叶斯概率
计算机科学
波束赋形
算法
贝叶斯推理
高斯过程
模式识别(心理学)
人工智能
Lasso(编程语言)
数学
统计
物理
量子力学
电信
万维网
天线(收音机)
作者
Peter Gerstoft,Christoph F. Mecklenbräuker,Angeliki Xenaki,Santosh Nannuru
标识
DOI:10.1109/lsp.2016.2598550
摘要
The directions of arrival (DOA) of plane waves are estimated from multisnapshot sensor array data using sparse Bayesian learning (SBL). The prior for the source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters, the unknown variances (i.e., the source powers). For a complex Gaussian likelihood with hyperparameter, the unknown noise variance, the corresponding Gaussian posterior distribution is derived. The hyperparameters are automatically selected by maximizing the evidence and promoting sparse DOA estimates. The SBL scheme for DOA estimation is discussed and evaluated competitively against LASSO (ℓ 1 -regularization), conventional beamforming, and MUSIC.
科研通智能强力驱动
Strongly Powered by AbleSci AI