Multimodal Profiling of 500,000 Memory T Cells from a Tuberculosis Cohort Identifies Cell State Associations with Demographics, Environment, and Disease

疾病 肺结核 免疫系统 细胞 结核分枝杆菌 效应器 生物 队列 T细胞 记忆T细胞 免疫学 计算生物学 医学 遗传学 内科学 病理
作者
Aparna Nathan,Jessica I. Beynor,Yuriy Baglaenko,Sara Suliman,Kazuyoshi Ishigaki,Samira Asgari,Chuan-Chin Huang,Yang Luo,Zibiao Zhang,Kattya Lopez Tamara,Judith Jimenez,Roger Calderon,Leonid Lecca,Ildiko Van Rhijn,D. Branch Moody,Megan Murray,Soumya Raychaudhuri
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3652337
摘要

T cell phenotyping is often limited by its reliance on single classes of markers (e.g., mRNA or protein). With multiview definitions of T cell states and their associations with non-immune factors, we can more precisely identify cell states underlying disease outcomes. Here, we use an integrative, multimodal strategy to characterize the landscape of human memory T cells. We computationally integrated high-dimensional single-cell RNA and surface protein marker data to produce an atlas of 500,089 memory T cells from 259 individuals in a Peruvian tuberculosis (TB) progression cohort profiled at immune steady-state > 4 years after infection, and we defined 31 memory T cell states based on coordinated expression of relevant genes and proteins. We associated these states with 38 demographic and environmental covariates and found strong effects of age, sex, season, and ancestry on T cell composition. We also characterized a polyfunctional Th17-like effector state reduced in abundance and function in individuals who had progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. This state — uniquely identifiable with multimodal analysis — was independently associated with TB progression and its comorbidities. Our study demonstrates the power of integrative multimodal single-cell profiling to define high-resolution cell states with functional relevance to disease and other traits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Ryo发布了新的文献求助10
2秒前
chen_hebo发布了新的文献求助100
3秒前
4秒前
shudder发布了新的文献求助10
5秒前
juanjuan完成签到,获得积分10
6秒前
程瑞哲发布了新的文献求助10
6秒前
独角兽完成签到 ,获得积分10
6秒前
种花兔完成签到,获得积分10
8秒前
高大迎曼完成签到,获得积分10
10秒前
Ryo完成签到,获得积分10
12秒前
科研通AI2S应助秋水浮萍采纳,获得10
13秒前
15秒前
RenchengHuang完成签到,获得积分10
16秒前
遇上就这样吧应助钵钵鸡采纳,获得30
17秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
17秒前
LaTeXer应助科研通管家采纳,获得50
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
棋士应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得50
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
yx_cheng应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
19秒前
扶桑发布了新的文献求助10
19秒前
啵啵完成签到 ,获得积分10
20秒前
22秒前
22秒前
生动的采枫完成签到 ,获得积分10
23秒前
txt233mega应助必过六级采纳,获得10
23秒前
打打应助程瑞哲采纳,获得10
24秒前
共享精神应助shlw采纳,获得10
25秒前
畅快的书兰完成签到,获得积分20
26秒前
刘红意完成签到,获得积分10
27秒前
搬砖盖房完成签到,获得积分10
27秒前
唯美发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019