清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs

多余的 射线照相术 上颌切牙 接收机工作特性 门牙 口腔正畸科 人工智能 牙科 计算机科学 医学 放射科 机器学习
作者
Chiaki Kuwada,Yoshiko Ariji,Motoki Fukuda,Yoshitaka Kise,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier BV]
卷期号:130 (4): 464-469 被引量:67
标识
DOI:10.1016/j.oooo.2020.04.813
摘要

Objective This investigation aimed to verify and compare the performance of 3 deep learning systems for classifying maxillary impacted supernumerary teeth (ISTs) in patients with fully erupted incisors. Study Design In total, the study included 550 panoramic radiographs obtained from 275 patients with at least 1 IST and 275 patients without ISTs in the maxillary incisor region. Three learning models were created by using AlexNet, VGG-16, and DetectNet. Four hundred images were randomly selected as training data, and 100 images were assigned as validating and testing data. The remaining 50 images were used as new testing data. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were calculated. Detection performance was evaluated by using recall, precision, and F-measure. Results DetectNet generally produced the highest values of diagnostic efficacy. VGG-16 yielded significantly lower values compared with DetectNet and AlexNet. Assessment of the detection performance of DetectNet showed that recall, precision, and F-measure for detection in the incisor region were all 1.0, indicating perfect detection. Conclusions DetectNet and AlexNet appear to have potential use in classifying the presence of ISTs in the maxillary incisor region on panoramic radiographs. Additionally, DetectNet would be suitable for automatic detection of this abnormality. This investigation aimed to verify and compare the performance of 3 deep learning systems for classifying maxillary impacted supernumerary teeth (ISTs) in patients with fully erupted incisors. In total, the study included 550 panoramic radiographs obtained from 275 patients with at least 1 IST and 275 patients without ISTs in the maxillary incisor region. Three learning models were created by using AlexNet, VGG-16, and DetectNet. Four hundred images were randomly selected as training data, and 100 images were assigned as validating and testing data. The remaining 50 images were used as new testing data. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve were calculated. Detection performance was evaluated by using recall, precision, and F-measure. DetectNet generally produced the highest values of diagnostic efficacy. VGG-16 yielded significantly lower values compared with DetectNet and AlexNet. Assessment of the detection performance of DetectNet showed that recall, precision, and F-measure for detection in the incisor region were all 1.0, indicating perfect detection. DetectNet and AlexNet appear to have potential use in classifying the presence of ISTs in the maxillary incisor region on panoramic radiographs. Additionally, DetectNet would be suitable for automatic detection of this abnormality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy完成签到 ,获得积分10
1秒前
1250241652完成签到,获得积分10
6秒前
Glitter完成签到 ,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
18秒前
量子星尘发布了新的文献求助10
25秒前
雍州小铁匠完成签到 ,获得积分10
26秒前
丝丢皮得完成签到 ,获得积分10
27秒前
毛毛弟完成签到 ,获得积分10
44秒前
嫣儿完成签到,获得积分10
45秒前
47秒前
奋斗的妙海完成签到 ,获得积分0
57秒前
CQ完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
32429606完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
平常日记本完成签到 ,获得积分10
1分钟前
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
airtermis完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ASL完成签到 ,获得积分10
2分钟前
常有李完成签到,获得积分10
2分钟前
有川洋一完成签到 ,获得积分10
2分钟前
2分钟前
gmc完成签到 ,获得积分10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
汉堡包应助伯赏尔云采纳,获得10
2分钟前
哈基米德应助贝妮戴塔采纳,获得20
2分钟前
拼搏的羊青完成签到 ,获得积分10
3分钟前
天将明完成签到 ,获得积分10
3分钟前
丘比特应助薛言采纳,获得10
3分钟前
Ava应助薛言采纳,获得10
3分钟前
刻苦的新烟完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015520
求助须知:如何正确求助?哪些是违规求助? 3555453
关于积分的说明 11318050
捐赠科研通 3288665
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012