Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

图同构 计算机科学 理论计算机科学 子图同构问题 表现力 图形属性 图形 地点 人工智能 折线图 电压图 语言学 哲学
作者
Giorgos Bouritsas,Fabrizio Frasca,Stefanos Zafeiriou,Michael M. Bronstein
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 657-668 被引量:172
标识
DOI:10.1109/tpami.2022.3154319
摘要

While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Leman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often intimately related to downstream tasks. To this end, we propose "Graph Substructure Networks" (GSN), a topologically-aware message passing scheme based on substructure encoding. We theoretically analyse the expressive power of our architecture, showing that it is strictly more expressive than the WL test, and provide sufficient conditions for universality. Importantly, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear network complexity, while being able to disambiguate even hard instances of graph isomorphism. We perform an extensive experimental evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings including molecular graphs and social networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高敏完成签到 ,获得积分10
1秒前
Lmy发布了新的文献求助10
1秒前
天天快乐应助愉快长颈鹿采纳,获得10
2秒前
crazysnowking完成签到,获得积分10
4秒前
邓佳鑫Alan应助ller采纳,获得10
4秒前
5秒前
5秒前
6秒前
李健应助谢大喵采纳,获得10
6秒前
领导范儿应助Zzzzz采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
传奇3应助ivying0209采纳,获得10
8秒前
科研通AI6应助大白兔爱吃糖采纳,获得200
10秒前
邓布利多发布了新的文献求助10
11秒前
12秒前
洋洋完成签到,获得积分10
12秒前
12秒前
crazysnowking发布了新的文献求助10
12秒前
65421发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
16秒前
Zzzzz发布了新的文献求助10
16秒前
乐乐应助nwds采纳,获得10
17秒前
17秒前
慕青应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
哈哈哈发布了新的文献求助10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
一一应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得30
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516