Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

图同构 计算机科学 理论计算机科学 子图同构问题 表现力 图形属性 图形 地点 人工智能 折线图 电压图 语言学 哲学
作者
Giorgos Bouritsas,Fabrizio Frasca,Stefanos Zafeiriou,Michael M. Bronstein
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 657-668 被引量:172
标识
DOI:10.1109/tpami.2022.3154319
摘要

While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Leman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often intimately related to downstream tasks. To this end, we propose "Graph Substructure Networks" (GSN), a topologically-aware message passing scheme based on substructure encoding. We theoretically analyse the expressive power of our architecture, showing that it is strictly more expressive than the WL test, and provide sufficient conditions for universality. Importantly, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear network complexity, while being able to disambiguate even hard instances of graph isomorphism. We perform an extensive experimental evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings including molecular graphs and social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大圣发布了新的文献求助10
3秒前
4秒前
孟德完成签到,获得积分10
5秒前
结实青文完成签到 ,获得积分10
9秒前
www发布了新的文献求助30
9秒前
散装冰块应助大胆的以彤采纳,获得10
10秒前
生信小菜鸟完成签到 ,获得积分10
14秒前
14秒前
17秒前
17秒前
theThreeMagi完成签到 ,获得积分10
17秒前
丘比特应助感动归尘采纳,获得10
19秒前
成就小丸子完成签到,获得积分10
20秒前
共享精神应助tang采纳,获得10
21秒前
Jian关注了科研通微信公众号
21秒前
等等发布了新的文献求助10
23秒前
24秒前
碧蓝的安露完成签到 ,获得积分10
25秒前
汉堡包应助毛毛采纳,获得10
25秒前
27秒前
27秒前
健忘怜雪完成签到,获得积分10
28秒前
香蕉觅云应助lz采纳,获得10
30秒前
32秒前
32秒前
dpk发布了新的文献求助10
32秒前
阳和启蛰发布了新的文献求助10
33秒前
34秒前
34秒前
毛毛完成签到,获得积分10
36秒前
tang发布了新的文献求助10
38秒前
39秒前
CHENCHENG完成签到 ,获得积分10
39秒前
毛毛发布了新的文献求助10
40秒前
17完成签到 ,获得积分10
40秒前
阳和启蛰完成签到,获得积分10
40秒前
40秒前
40秒前
大梦一场完成签到 ,获得积分20
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549266
求助须知:如何正确求助?哪些是违规求助? 3979793
关于积分的说明 12321733
捐赠科研通 3648625
什么是DOI,文献DOI怎么找? 2009373
邀请新用户注册赠送积分活动 1044805
科研通“疑难数据库(出版商)”最低求助积分说明 933280