Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

图同构 计算机科学 理论计算机科学 子图同构问题 表现力 图形属性 图形 地点 人工智能 折线图 电压图 语言学 哲学
作者
Giorgos Bouritsas,Fabrizio Frasca,Stefanos Zafeiriou,Michael M. Bronstein
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 657-668 被引量:140
标识
DOI:10.1109/tpami.2022.3154319
摘要

While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Leman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often intimately related to downstream tasks. To this end, we propose ”Graph Substructure Networks” (GSN), a topologically-aware message passing scheme based on substructure encoding. We theoretically analyse the expressive power of our architecture, showing that it is strictly more expressive than the WL test, and provide sufficient conditions for universality. Importantly, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear network complexity, while being able to disambiguate even hard instances of graph isomorphism. We perform an extensive experimental evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings including molecular graphs and social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴奋的水池关注了科研通微信公众号
1秒前
无心的仙人掌完成签到,获得积分20
2秒前
2秒前
2秒前
4秒前
萧寒发布了新的文献求助10
4秒前
5秒前
古藤发布了新的文献求助10
5秒前
5秒前
木南完成签到,获得积分20
6秒前
哒哒发布了新的文献求助10
6秒前
6秒前
斯文的魔镜完成签到,获得积分10
7秒前
大气夜南发布了新的文献求助10
7秒前
ttkqwe发布了新的文献求助10
7秒前
田様应助真实的映容采纳,获得10
8秒前
明明完成签到,获得积分10
8秒前
杨大夫发布了新的文献求助10
8秒前
9秒前
粥粥完成签到,获得积分10
9秒前
atdawn1998发布了新的文献求助10
10秒前
Qiangxianing完成签到,获得积分20
10秒前
10秒前
11秒前
科研通AI2S应助木南采纳,获得10
11秒前
11秒前
12秒前
科研通AI2S应助酷酷采纳,获得10
13秒前
归诚发布了新的文献求助10
13秒前
古藤发布了新的文献求助10
13秒前
14秒前
14秒前
今后应助lily88采纳,获得10
15秒前
hopen完成签到 ,获得积分10
15秒前
刘平平发布了新的文献求助10
16秒前
言不得语发布了新的文献求助10
16秒前
飞兰发布了新的文献求助10
19秒前
ichris完成签到,获得积分10
20秒前
昌海完成签到,获得积分10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790850
关于积分的说明 7796798
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301745
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194