亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized surveillance for hepatocellular carcinoma in cirrhosis – using machine learning adapted to HCV status

医学 肝细胞癌 肝硬化 队列 凝血酶原时间 内科学 逻辑回归 胃肠病学 肿瘤科 丙型肝炎
作者
Étienne Audureau,Fabrice Carrat,Richard Layese,Carole Cagnot,Tarik Asselah,Dominique Guyader,Dominique Larrey,Victor de Lédinghen,Denis Ouzan,Fabien Zoulim,Dominique Roulot,Albert Tran,Jean‐Pierre Bronowicki,Jean‐Pierre Zarski,Ghassan Riachi,Paul Calès,Jean‐Marie Péron,Laurent Alric,Marc Bourlière,Philippe Mathurin,Jean‐Frédéric Blanc,Armand Abergel,Olivier Chazouillères,Ariane Mallat,Jean‐Didier Grangé,P Attali,Louis d’Altéroche,Claire Wartelle,Thông Dao,Dominique Thabut,Christophe Pilette,Christine Silvain,Christos Christidis,Éric Nguyen-Khac,Brigitte Bernard‐Chabert,David Zucman,Vincent Di Martino,Angéla Sutton,Stanislas Pol,Pierre Nahon
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:73 (6): 1434-1445 被引量:64
标识
DOI:10.1016/j.jhep.2020.05.052
摘要

Background & Aims

Refining hepatocellular carcinoma (HCC) surveillance programs requires improved individual risk prediction. Thus, we aimed to develop algorithms based on machine learning approaches to predict the risk of HCC more accurately in patients with HCV-related cirrhosis, according to their virological status.

Methods

Patients with compensated biopsy-proven HCV-related cirrhosis from the French ANRS CO12 CirVir cohort were included in a semi-annual HCC surveillance program. Three prognostic models for HCC occurrence were built, using (i) Fine-Gray regression as a benchmark, (ii) single decision tree (DT), and (iii) random survival forest for competing risks survival (RSF). Model performance was evaluated from C-indexes validated externally in the ANRS CO22 Hepather cohort (n = 668 enrolled between 08/2012–01/2014).

Results

Out of 836 patients analyzed, 156 (19%) developed HCC and 434 (52%) achieved sustained virological response (SVR) (median follow-up 63 months). Fine-Gray regression models identified 6 independent predictors of HCC occurrence in patients before SVR (past excessive alcohol intake, genotype 1, elevated AFP and GGT, low platelet count and albuminemia) and 3 in patients after SVR (elevated AST, low platelet count and shorter prothrombin time). DT analysis confirmed these associations but revealed more complex interactions, yielding 8 patient groups with varying cancer risks and predictors depending on SVR achievement. On RSF analysis, the most important predictors of HCC varied by SVR status (non-SVR: platelet count, GGT, AFP and albuminemia; SVR: prothrombin time, ALT, age and platelet count). Externally validated C-indexes before/after SVR were 0.64/0.64 [Fine-Gray], 0.60/62 [DT] and 0.71/0.70 [RSF].

Conclusions

Risk factors for hepatocarcinogenesis differ according to SVR status. Machine learning algorithms can refine HCC risk assessment by revealing complex interactions between cancer predictors. Such approaches could be used to develop more cost-effective tailored surveillance programs.

Lay summary

Patients with HCV-related cirrhosis must be included in liver cancer surveillance programs, which rely on ultrasound examination every 6 months. Hepatocellular carcinoma (HCC) screening is hampered by sensitivity issues, leading to late cancer diagnoses in a substantial number of patients. Refining surveillance periodicity and modality using more sophisticated imaging techniques such as MRI may only be cost-effective in patients with the highest HCC incidence. Herein, we demonstrate how machine learning algorithms (i.e. data-driven mathematical models to make predictions or decisions), can refine individualized risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
qq发布了新的文献求助10
12秒前
16秒前
111发布了新的文献求助10
19秒前
22秒前
yyds完成签到,获得积分10
26秒前
wpj发布了新的文献求助10
26秒前
33秒前
等待安莲应助海燕采纳,获得10
35秒前
liziqi发布了新的文献求助10
36秒前
liziqi完成签到,获得积分10
51秒前
111111发布了新的文献求助10
54秒前
小哈完成签到 ,获得积分10
58秒前
med_wudi完成签到,获得积分10
58秒前
59秒前
传奇3应助科研通管家采纳,获得10
1分钟前
ET应助科研通管家采纳,获得20
1分钟前
111111完成签到,获得积分10
1分钟前
1分钟前
med_wudi发布了新的文献求助10
1分钟前
大模型应助锯子采纳,获得10
1分钟前
1分钟前
WerWu完成签到,获得积分10
1分钟前
NattyPoe完成签到,获得积分10
1分钟前
小宋应助海燕采纳,获得30
1分钟前
tejing1158完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
英姑应助浅浅采纳,获得10
1分钟前
红叶发布了新的文献求助10
1分钟前
rainbow完成签到 ,获得积分0
1分钟前
韩妙发布了新的文献求助30
1分钟前
1分钟前
1分钟前
怕孤单的幼荷完成签到 ,获得积分10
1分钟前
Luffy发布了新的文献求助10
1分钟前
orixero应助韩妙采纳,获得10
1分钟前
1分钟前
冯尔蓝完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041762
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860