Personalized surveillance for hepatocellular carcinoma in cirrhosis – using machine learning adapted to HCV status

医学 肝细胞癌 肝硬化 队列 凝血酶原时间 内科学 逻辑回归 胃肠病学 肿瘤科 丙型肝炎
作者
Étienne Audureau,Fabrice Carrat,Richard Layese,Carole Cagnot,Tarik Asselah,Dominique Guyader,Dominique Larrey,Victor de Lédinghen,Denis Ouzan,Fabien Zoulim,Dominique Roulot,Albert Tran,Jean‐Pierre Bronowicki,Jean‐Pierre Zarski,Ghassan Riachi,Paul Calès,Jean‐Marie Péron,Laurent Alric,Marc Bourlière,Philippe Mathurin,Jean‐Frédéric Blanc,Armand Abergel,Olivier Chazouillères,Ariane Mallat,Jean‐Didier Grangé,P Attali,Louis d’Altéroche,Claire Wartelle,Thông Dao,Dominique Thabut,Christophe Pilette,Christine Silvain,Christos Christidis,Éric Nguyen-Khac,Brigitte Bernard‐Chabert,David Zucman,Vincent Di Martino,Angéla Sutton,Stanislas Pol,Pierre Nahon
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:73 (6): 1434-1445 被引量:64
标识
DOI:10.1016/j.jhep.2020.05.052
摘要

Background & Aims

Refining hepatocellular carcinoma (HCC) surveillance programs requires improved individual risk prediction. Thus, we aimed to develop algorithms based on machine learning approaches to predict the risk of HCC more accurately in patients with HCV-related cirrhosis, according to their virological status.

Methods

Patients with compensated biopsy-proven HCV-related cirrhosis from the French ANRS CO12 CirVir cohort were included in a semi-annual HCC surveillance program. Three prognostic models for HCC occurrence were built, using (i) Fine-Gray regression as a benchmark, (ii) single decision tree (DT), and (iii) random survival forest for competing risks survival (RSF). Model performance was evaluated from C-indexes validated externally in the ANRS CO22 Hepather cohort (n = 668 enrolled between 08/2012–01/2014).

Results

Out of 836 patients analyzed, 156 (19%) developed HCC and 434 (52%) achieved sustained virological response (SVR) (median follow-up 63 months). Fine-Gray regression models identified 6 independent predictors of HCC occurrence in patients before SVR (past excessive alcohol intake, genotype 1, elevated AFP and GGT, low platelet count and albuminemia) and 3 in patients after SVR (elevated AST, low platelet count and shorter prothrombin time). DT analysis confirmed these associations but revealed more complex interactions, yielding 8 patient groups with varying cancer risks and predictors depending on SVR achievement. On RSF analysis, the most important predictors of HCC varied by SVR status (non-SVR: platelet count, GGT, AFP and albuminemia; SVR: prothrombin time, ALT, age and platelet count). Externally validated C-indexes before/after SVR were 0.64/0.64 [Fine-Gray], 0.60/62 [DT] and 0.71/0.70 [RSF].

Conclusions

Risk factors for hepatocarcinogenesis differ according to SVR status. Machine learning algorithms can refine HCC risk assessment by revealing complex interactions between cancer predictors. Such approaches could be used to develop more cost-effective tailored surveillance programs.

Lay summary

Patients with HCV-related cirrhosis must be included in liver cancer surveillance programs, which rely on ultrasound examination every 6 months. Hepatocellular carcinoma (HCC) screening is hampered by sensitivity issues, leading to late cancer diagnoses in a substantial number of patients. Refining surveillance periodicity and modality using more sophisticated imaging techniques such as MRI may only be cost-effective in patients with the highest HCC incidence. Herein, we demonstrate how machine learning algorithms (i.e. data-driven mathematical models to make predictions or decisions), can refine individualized risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pheonix1998完成签到,获得积分10
1秒前
1秒前
Kate完成签到,获得积分10
2秒前
Ava应助蓝天白云采纳,获得10
2秒前
qiqi完成签到,获得积分10
2秒前
花开的石头完成签到,获得积分10
2秒前
qi发布了新的文献求助10
2秒前
普外科老白完成签到,获得积分10
3秒前
拿铁五分糖完成签到,获得积分10
3秒前
阿克图尔斯·蒙斯克完成签到,获得积分10
3秒前
3秒前
3秒前
渔婆完成签到,获得积分10
3秒前
谨慎垣完成签到,获得积分10
3秒前
皮皮虾完成签到 ,获得积分10
4秒前
katrina完成签到,获得积分10
5秒前
5秒前
6秒前
马登完成签到,获得积分10
6秒前
离言完成签到,获得积分10
6秒前
知性的问玉完成签到,获得积分10
6秒前
7秒前
酚羟基装醇完成签到,获得积分10
8秒前
亚当完成签到 ,获得积分10
8秒前
清清甜应助lzh采纳,获得10
8秒前
永远55度发布了新的文献求助10
9秒前
6666666发布了新的文献求助10
9秒前
童话完成签到,获得积分10
9秒前
9秒前
sujinyu发布了新的文献求助10
9秒前
lkk完成签到,获得积分10
10秒前
勤勤的新星完成签到,获得积分10
10秒前
10秒前
科研小牛马完成签到,获得积分10
10秒前
guohuameike完成签到,获得积分10
11秒前
zanedou完成签到,获得积分10
11秒前
红绿蓝完成签到 ,获得积分10
11秒前
11秒前
希望天下0贩的0应助ggdio采纳,获得10
11秒前
NANFENGSUSU发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044