亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personalized surveillance for hepatocellular carcinoma in cirrhosis – using machine learning adapted to HCV status

医学 肝细胞癌 肝硬化 队列 凝血酶原时间 内科学 逻辑回归 胃肠病学 肿瘤科 丙型肝炎
作者
Étienne Audureau,Fabrice Carrat,Richard Layese,Carole Cagnot,Tarik Asselah,Dominique Guyader,Dominique Larrey,Victor de Lédinghen,Denis Ouzan,Fabien Zoulim,Dominique Roulot,Albert Tran,Jean‐Pierre Bronowicki,Jean‐Pierre Zarski,Ghassan Riachi,Paul Calès,Jean‐Marie Péron,Laurent Alric,Marc Bourlière,Philippe Mathurin
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:73 (6): 1434-1445 被引量:69
标识
DOI:10.1016/j.jhep.2020.05.052
摘要

Background & Aims

Refining hepatocellular carcinoma (HCC) surveillance programs requires improved individual risk prediction. Thus, we aimed to develop algorithms based on machine learning approaches to predict the risk of HCC more accurately in patients with HCV-related cirrhosis, according to their virological status.

Methods

Patients with compensated biopsy-proven HCV-related cirrhosis from the French ANRS CO12 CirVir cohort were included in a semi-annual HCC surveillance program. Three prognostic models for HCC occurrence were built, using (i) Fine-Gray regression as a benchmark, (ii) single decision tree (DT), and (iii) random survival forest for competing risks survival (RSF). Model performance was evaluated from C-indexes validated externally in the ANRS CO22 Hepather cohort (n = 668 enrolled between 08/2012–01/2014).

Results

Out of 836 patients analyzed, 156 (19%) developed HCC and 434 (52%) achieved sustained virological response (SVR) (median follow-up 63 months). Fine-Gray regression models identified 6 independent predictors of HCC occurrence in patients before SVR (past excessive alcohol intake, genotype 1, elevated AFP and GGT, low platelet count and albuminemia) and 3 in patients after SVR (elevated AST, low platelet count and shorter prothrombin time). DT analysis confirmed these associations but revealed more complex interactions, yielding 8 patient groups with varying cancer risks and predictors depending on SVR achievement. On RSF analysis, the most important predictors of HCC varied by SVR status (non-SVR: platelet count, GGT, AFP and albuminemia; SVR: prothrombin time, ALT, age and platelet count). Externally validated C-indexes before/after SVR were 0.64/0.64 [Fine-Gray], 0.60/62 [DT] and 0.71/0.70 [RSF].

Conclusions

Risk factors for hepatocarcinogenesis differ according to SVR status. Machine learning algorithms can refine HCC risk assessment by revealing complex interactions between cancer predictors. Such approaches could be used to develop more cost-effective tailored surveillance programs.

Lay summary

Patients with HCV-related cirrhosis must be included in liver cancer surveillance programs, which rely on ultrasound examination every 6 months. Hepatocellular carcinoma (HCC) screening is hampered by sensitivity issues, leading to late cancer diagnoses in a substantial number of patients. Refining surveillance periodicity and modality using more sophisticated imaging techniques such as MRI may only be cost-effective in patients with the highest HCC incidence. Herein, we demonstrate how machine learning algorithms (i.e. data-driven mathematical models to make predictions or decisions), can refine individualized risk prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caca完成签到,获得积分0
25秒前
36秒前
平常安发布了新的文献求助10
41秒前
50秒前
aaa发布了新的文献求助10
57秒前
aaa完成签到,获得积分20
1分钟前
波恩奥本海默绝热近似完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
楠lalala发布了新的文献求助10
2分钟前
李健应助迷路竹采纳,获得10
2分钟前
坤坤完成签到,获得积分10
2分钟前
2分钟前
xcgh应助ylsk采纳,获得10
2分钟前
脑洞疼应助楠lalala采纳,获得10
2分钟前
冰雪痕发布了新的文献求助10
2分钟前
snowwww发布了新的文献求助20
2分钟前
3分钟前
平常安发布了新的文献求助10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
万能图书馆应助冰雪痕采纳,获得10
4分钟前
4分钟前
冰雪痕发布了新的文献求助10
4分钟前
小二郎应助慢走不宋女士采纳,获得10
4分钟前
酷波er应助Elysa采纳,获得10
4分钟前
4分钟前
冷静的梦芝完成签到 ,获得积分10
5分钟前
99668完成签到,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
田様应助秋日思语采纳,获得10
6分钟前
anders完成签到 ,获得积分10
6分钟前
6分钟前
小蘑菇应助慢走不宋女士采纳,获得10
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210497
求助须知:如何正确求助?哪些是违规求助? 4387298
关于积分的说明 13662653
捐赠科研通 4247146
什么是DOI,文献DOI怎么找? 2330125
邀请新用户注册赠送积分活动 1327877
关于科研通互助平台的介绍 1280484