Smart Robotic System Tracks Buried Pipelines, Inspects for External Damage

管道运输 管道(软件) 工程类 机器人 计算机科学 嵌入式系统 海洋工程 机械工程 人工智能
作者
Judy Feder
出处
期刊:Journal of Petroleum Technology [Society of Petroleum Engineers]
卷期号:71 (12): 59-62 被引量:1
标识
DOI:10.2118/1219-0059-jpt
摘要

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 192773, “A Smart Robotic System for Noncontact Condition Monitoring and Fault Detection in Buried Pipelines,” by Xiaoxiong Zhang and Amit Shukla, Khalifa University; Abdulla Al Ali, ADNOC; and Hamad Karki, Khalifa University, prepared for the 2018 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 12–14 November. The paper has not been peer reviewed. The complete paper describes the development of a smart robotic inspection system for noncontact condition monitoring and fault detection in buried pipelines. Steered by a pipe locator, the smart robot, called an autonomous ground vehicle (AGV), can autonomously track the buried pipeline and simultaneously inspect it externally with a metal magnetic memory (MMM) sensor. The smart robotic system is designed to overcome the shortcomings of both manual external inspection and noninvasive magnetometric diagnosis (NIMD), making pipeline inspection safer, more efficient, and less expensive. Introduction Condition monitoring and defect inspection of buried pipelines has been a constant challenge for all oil and gas operations. Maintaining safety and prolonging the service life of ferrous metal pipelines that are exposed to harsh operating environments and damage from corrosion, erosion, and cracking requires regular inspection to diagnose existing or potential defects. Pipelines can be inspected in two ways: internally and externally. Internal, or inline, inspection primarily uses an intelligent pipeline inspection gauge equipped with sensors to measure the size, location, and orientation of defects inside the pipeline. In external inspection, which is the subject of the paper, workers drive a vehicle along the pipeline to visually inspect for detection of leakage or any other kind of visible damage. Such manual external inspection is highly inefficient, expensive, and hazardous. It is also difficult to obtain any important information about anomalies brewing in the buried pipes or cathodic protection layers using this method. Much work has been undertaken to develop nondestructive testing (NDT) technologies to inspect pipelines. However, most of these NDT sensors work only in close vicinity to the pipeline surface, so this method requires excavating the pipeline and exposing the structure. This shortcoming has instigated research toward other NDT techniques such as NIMD, which allows noncontact detection of anomalies from a distance in the core metal of pipelines buried deeply underground. NIMD sensors work on the principle of measuring distortions of residual magnetic fields caused by the variation in the pipeline’s metal magnetic permeability in a stress concentration zone (SCZ). The SCZ, and the potential changes in metal magnetic permeability, result from the combined influence of residual stress, vibration, bending and loading of pipelines, installation stress, temperature fluctuations, and other factors. These handheld magnetic sensors are used by field operators, making inspection of long pipelines in extreme environmental conditions unfeasible. Efforts to develop more-intelligent and -efficient methods of external inspection led to the design of various types of in-pipe inspection robots. Overall, all types of in-pipe robots are designed for solving specific problems relating to the pipeline’s interior environment, which is complex, invisible, and unpredictable. The technology presented in this paper resulted from the idea of using a robot that can simultaneously track and externally inspect the pipeline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
李健的小迷弟应助乐多采纳,获得10
2秒前
香蕉觅云应助福尔摩云采纳,获得10
3秒前
3秒前
Rhan完成签到,获得积分10
3秒前
6秒前
小马甲应助QQ采纳,获得10
8秒前
机灵千萍完成签到,获得积分10
9秒前
王治豪完成签到,获得积分20
9秒前
HOLDMEN发布了新的文献求助10
9秒前
端庄的紫烟完成签到 ,获得积分10
9秒前
9秒前
隐形曼青应助怡神001采纳,获得10
10秒前
11秒前
yin发布了新的文献求助10
12秒前
Sunny完成签到,获得积分10
13秒前
说说发布了新的文献求助10
13秒前
一个one子完成签到 ,获得积分10
14秒前
15秒前
王治豪发布了新的文献求助10
16秒前
浮游应助dandan采纳,获得10
17秒前
17秒前
余慵慵完成签到 ,获得积分10
17秒前
17秒前
Yingkun_Xu发布了新的文献求助10
17秒前
hana完成签到 ,获得积分10
18秒前
Xingkun_li完成签到,获得积分10
18秒前
lingquanmeng完成签到 ,获得积分10
19秒前
19秒前
浮游应助路边一条采纳,获得10
19秒前
浮游应助路边一条采纳,获得10
19秒前
ZhaohuaXie应助路边一条采纳,获得10
19秒前
ZhaohuaXie应助路边一条采纳,获得10
19秒前
科研通AI2S应助路边一条采纳,获得10
19秒前
大块完成签到 ,获得积分10
19秒前
在水一方应助杨涵采纳,获得10
19秒前
端庄千琴完成签到,获得积分10
20秒前
20秒前
无奈的晴发布了新的文献求助10
20秒前
lalalala发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498827
求助须知:如何正确求助?哪些是违规求助? 4595945
关于积分的说明 14451224
捐赠科研通 4528971
什么是DOI,文献DOI怎么找? 2481784
邀请新用户注册赠送积分活动 1465774
关于科研通互助平台的介绍 1438730