Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

计算机科学 最优化问题 凸优化 正多边形 算法 数学优化 数学 几何学
作者
Stephen Boyd
出处
期刊:Foundations and trends in machine learning [Now Publishers]
被引量:13233
标识
DOI:10.1561/9781601984616
摘要

Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘哔完成签到,获得积分10
1秒前
1秒前
somin完成签到,获得积分10
1秒前
1秒前
2秒前
Tuffy_Du完成签到,获得积分10
2秒前
emm发布了新的文献求助10
2秒前
2秒前
顾矜应助天真茗采纳,获得150
2秒前
2秒前
3秒前
4秒前
4秒前
gbw123完成签到,获得积分10
4秒前
深情安青应助于彤采纳,获得10
5秒前
Tuffy_Du发布了新的文献求助10
5秒前
星辰大海应助自由白风采纳,获得10
5秒前
5秒前
32发布了新的文献求助10
6秒前
zz发布了新的文献求助10
7秒前
7秒前
不管啦发布了新的文献求助20
7秒前
8秒前
瘦瘦白昼完成签到,获得积分10
8秒前
9秒前
9秒前
998发布了新的文献求助10
10秒前
舒适的曼彤完成签到,获得积分10
10秒前
小鱼发布了新的文献求助10
10秒前
aliu完成签到,获得积分10
11秒前
11秒前
大个应助orang采纳,获得10
11秒前
Lily完成签到,获得积分10
12秒前
杰克开膛手完成签到,获得积分10
12秒前
星星完成签到,获得积分20
12秒前
KeCoKeLe完成签到,获得积分10
13秒前
Tao完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149