Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

计算机科学 最优化问题 凸优化 正多边形 算法 数学优化 数学 几何学
作者
Stephen Boyd
出处
期刊:Foundations and trends in machine learning [Now Publishers]
被引量:13161
标识
DOI:10.1561/9781601984616
摘要

Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴之琳发布了新的文献求助10
1秒前
研零小白完成签到,获得积分10
1秒前
2秒前
津津乐道完成签到,获得积分10
2秒前
2秒前
泡面加蛋发布了新的文献求助10
3秒前
3秒前
坚定的道天完成签到,获得积分10
4秒前
shadow发布了新的文献求助10
4秒前
啊倦完成签到,获得积分20
5秒前
Helic完成签到,获得积分10
5秒前
LEO謙完成签到 ,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助木辰采纳,获得10
7秒前
今后应助搁浅采纳,获得10
7秒前
祖飞扬完成签到,获得积分20
8秒前
HopeStar发布了新的文献求助10
8秒前
科研小陈完成签到,获得积分10
8秒前
Sir_M完成签到,获得积分10
8秒前
Soleven发布了新的文献求助10
8秒前
寒冷的觅露完成签到,获得积分10
9秒前
迷路海蓝应助lzx采纳,获得10
9秒前
10秒前
10秒前
xiaobai完成签到,获得积分10
11秒前
chriselva应助刘雨诗采纳,获得10
12秒前
子非鱼完成签到 ,获得积分10
13秒前
文竹不对称耶完成签到,获得积分10
14秒前
yybaby发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
斯文的可冥完成签到,获得积分10
16秒前
北极星162应助张同学采纳,获得10
16秒前
22发布了新的文献求助10
16秒前
Zz完成签到 ,获得积分0
17秒前
17秒前
薄荷小新完成签到 ,获得积分10
18秒前
Colin完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386