Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

计算机科学 最优化问题 凸优化 正多边形 算法 数学优化 数学 几何学
作者
Stephen Boyd
出处
期刊:Foundations and trends in machine learning [Now Publishers]
被引量:13233
标识
DOI:10.1561/9781601984616
摘要

Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
蜘猪侠zx应助科研通管家采纳,获得10
刚刚
Akim应助娄十三采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
明亮小馒头完成签到,获得积分10
1秒前
猴王完成签到,获得积分10
2秒前
天天摸鱼完成签到,获得积分10
3秒前
青丘提案完成签到,获得积分10
3秒前
4秒前
苗苗完成签到,获得积分10
4秒前
英俊的铭应助congcong采纳,获得10
4秒前
睡不醒的喵完成签到,获得积分10
4秒前
5秒前
不入完成签到,获得积分10
5秒前
6秒前
6秒前
研友_方达完成签到,获得积分10
8秒前
8秒前
猫南北完成签到,获得积分10
8秒前
CodeCraft应助青丘提案采纳,获得10
9秒前
ljy完成签到,获得积分10
9秒前
。。。发布了新的文献求助10
10秒前
11秒前
mp5完成签到,获得积分10
13秒前
Zuya发布了新的文献求助10
14秒前
Surly完成签到,获得积分10
14秒前
大团长完成签到,获得积分10
15秒前
chenc发布了新的文献求助30
16秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188