芳香族氨基酸
氨基酸
生物化学
苯丙氨酸
生物合成
酪氨酸
酿酒酵母
苯丙氨酸羟化酶
新陈代谢
生物
氨基酸合成
恒化器
焊剂(冶金)
细胞外
化学
酶
酵母
细菌
有机化学
遗传学
赖氨酸
作者
Marijke A. H. Luttik,Zeynep Vuralhan,Erwin Suir,Gerhard H. Braus,Jack T. Pronk,Jean‐Marc Daran
标识
DOI:10.1016/j.ymben.2008.02.002
摘要
A quantitative analysis of the impact of feedback inhibition on aromatic amino acid biosynthesis was performed in chemostat cultures of Saccharomyces cerevisiae. Introduction of a tyrosine-insensitive allele of ARO4 (encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase) caused a three-fold increase of intracellular phenylalanine and tyrosine concentrations. These amino acids were not detected extracellularly. However, an over 100-fold increase of the extracellular levels of phenylacetate, phenylethanol and their para-hydroxyl analogues was observed. The total increase of the flux through the aromatic pathway was estimated to be over four-fold. Individual overexpression of either the wild-type or feedback insensitive allele of ARO7 (encoding chorismate mutase had no significant impact. However when they were combined with the Tyr-insensitive ARO4 allele in combination with the Tyr-insensitive ARO4 allele, extracellular concentrations of aromatic compounds were increased by over 200-fold relative to the reference strain, corresponding to a 4.5-fold increase of the flux through the aromatic amino acid biosynthesis pathway. Elimination of allosteric control on these two key reactions in aromatic amino acid metabolism significantly affected intracellular concentrations of several non-aromatic amino acids. This broader impact of amino acid biosynthesis presents a challenge in rational optimization of the production of specific amino acids and derived flavour compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI