亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols

酒精氧化 化学 有机化学
作者
Alberto Abad,Patricia Concepción,Avelino Corma,Hermenegildo Garcı́a
出处
期刊:Angewandte Chemie [Wiley]
卷期号:44 (26): 4066-4069 被引量:1039
标识
DOI:10.1002/anie.200500382
摘要

Ceria nanoparticles as a support stabilize positive gold species and provide oxygen vacancies. The resulting solid exhibits an exceedingly high efficiency for the solventless aerobic oxidation of primary and secondary alcohols to carbonyl compounds (see picture). The selective oxidation of alcohols is one of the most challenging reactions in green chemistry.1–4 An ideal green oxidation process should involve a highly active and selective recyclable catalyst that is able to work at atmospheric pressure in the presence of oxygen and the absence of solvents and bases.5 Stoichiometric oxidations using transition metal compounds or sulfoxides (Swern oxidation) are still commonly used, despite the formation of a large amount of undesirable products. Several homogeneous Pd-, Cu-, or Ru-based catalysts are able to perform the selective oxidation of alcohols, but they require the use of organic solvents or high oxygen pressure.6–11 From the point of view of heterogeneous catalysis, probably the best system has been reported recently by Kaneda et al.,12 where a palladium-containing apatite is able to oxidize alcohols at atmospheric oxygen pressure even in the absence of solvents. Mizuno et al.13, 14 have described a ruthenium-containing solid catalyst that is able to selectively produce carbonyl compounds from alcohols in the presence of oxygen at atmospheric pressure. Other solid catalysts based on hydrotalcites,15 apatites and mixed oxides,16 or supported Pt and Pd17, 18 have also been studied. Small-crystal-size gold supported on inorganic oxides or active carbon has recently attracted considerable attention since these catalysts are able to promote the selective oxidation of alcohols.19–25 Taking into account that inorganic oxides contain some sites that are able to oxidize alcohols stoichiometrically, it appeared to us that a new concept of catalyst could be put forward if these stoichiometric sites can be converted into catalytic sites by introducing a solid co-catalyst that facilitates the reoxidation of the intermediate metal hydrides to water and the original inorganic oxide. To prove this concept we selected cerium oxide, which contains stoichiometric oxidation sites of alcohols, and cationic gold, which is a metal that transfers hydrides reversibly. In particular, the combination26 of small-crystal-size gold (2–5 nm) and nanocrystalline ceria (≈5 nm) turned out to give a highly active, selective, and recyclable catalyst for the oxidation of alcohols into aldehydes and ketones with high turnover numbers (TON) and frequencies (TOF) using oxygen at atmospheric pressure as oxidant in the absence of solvent and base. Pure, nanocrystalline cerium oxide contains sites that are able to perform the oxidation of alcohols in a stoichiometric manner. Indeed, when IR experiments were carried out in situ by adsorbing 2-propanol on nanocrystalline cerium oxide (see Supporting Information), two IR bands associated with cerium alkoxide appeared; the growth of a band attributable to cerium hydride, was also observed. The appearance of a carbonyl band indicates that acetone was formed at the same time as the cerium hydride. Upon subsequent introduction of O2 into the IR cell at room temperature, the band due to cerium hydride remained unaltered and the formation of water was not observed. These experiments show that cerium oxide alone is able to perform one reaction cycle, but the reduced cerium is stable in the presence of physisorbed O2 and the catalytic cycle is not closed. When gold nanoparticles were deposited onto the nanocrystalline cerium oxide (see Supporting Information for the detailed preparation procedure), the XPS spectrum of the Au 4f7/2 core level shows three bands (see Supporting Information), which correspond to Au3+, Au+, and Au0.27 The presence of cationic gold was also confirmed by the IR band of adsorbed CO (see Supporting Information).28 These results can be rationalized by assuming that the gold nanoparticles formed on the Au⊂CeO2 catalyst (see HRTEM images in the Supporting Information) interact with the nanometric ceria surface, which stabilizes the positive oxidation states of gold26, 29, 30 by creating Ce3+ and oxygen-deficient sites in the ceria. When the anaerobic oxidation of 2-propanol on Au⊂CeO2 was monitored in situ by IR spectroscopy (see Supporting Information) in the same way as with pure nanocrystalline CeO2, the IR bands of the cerium alkoxide and hydride were again observed, and acetone was also formed. However, when O2 was subsequently introduced the metal hydride disappeared and water was formed, contrary to what occurred with CeO2. At this point the cerium oxide is therefore ready to perform another catalytic cycle. After these spectroscopic studies, Au⊂CeO2 was tested as a solid catalyst for the selective aerobic oxidation of a large variety of alcohols. The reactions were performed in a magnetically stirred, glass batch reactor in the absence of solvent and base at 80 °C, with O2 at atmospheric pressure. In other cases the oxidations were also performed in basic water (see Supporting Information for experimental details). High conversions and selectivities were obtained with short reaction times (Table 1). Entry Substrate t [h] Conversion [%] Product Selectivity [%] 1[b] 3-octanol 3.5 97 3-octanone >99 2[c] 3-octanol 2.5 89 3-octanone 96 3[b] 2-phenylethanol 2.5 92 acetophenone 97 4[b] 2,6-dimethylcyclohexanol 2.5 78 2,6-dimethylcyclohexanone 94 5[b] 1-octen-3-ol 3.5 80 1-octen-3-one >99 6[b] cinnamyl alcohol 7 66 cinnamaldehyde 73 7[b] 3,4-dimethoxybenzyl alcohol 7 73 3,4-dimethoxybenzaldehyde 83 8[b] 3-phenyl-1-propanol 6 70 3-phenylpropyl 3-phenylpropanoate 98 9[d] vanillin alcohol 2 96 vanillin 98 10[d] 2-hydroxybenzyl alcohol 2 >99 2-hydroxybenzaldehyde 87 11[d] 3,4-dimethoxybenzyl alcohol 2 >99 3,4-dimethoxybenzylic acid >99 12[d] cinnamyl alcohol 3 >99 cinnamylic acid 98 13[e] n-hexanol 10 >99 hexanoic acid >99 14[d] 2-phenylethanol 5 >99 acetophenone 51 The benefit of using nanoparticles of CeO2 as a support for the gold becomes obvious when comparing the activity (TOF) of Au⊂CeO2 with the activities of Au supported on conventional CeO2 (Au/CeO2), Au/carbon (Au/C) (see Supporting Information for experimental details of the preparation), Au/TiO2, and Au/Fe2O3 (these two last catalysts were supplied by the International Gold Council; Figure 1).31 Note that Au⊂CeO2 is active for the oxidation of alcohols in the absence of solvent and base, conditions under which most other supported gold catalysts are inefficient.5 For instance, Au/C does not catalyze oxidation reactions in the absence of base and water. Turnover frequencies for the oxidation of 3-octanol, given as the ratio of moles of 3-octanone per mole of Au per hour, measured at t=10 min (see Table 1 for reaction conditions). Secondary alcohols can be oxidized with essentially complete conversion and high selectivities on Au⊂CeO2 in the absence of solvent, and benzylic or allylic alcohols are selectively oxidized to the corresponding unsaturated aldehydes, although longer reaction times are required. Aliphatic primary alcohols are more reluctant to undergo oxidation in the absence of solvent. Notably, they give predominantly the corresponding ester with high selectivity, accompanied by lesser amounts of the aldehyde. We have found that esters are directly formed via the hemiacetal, which is detectable by 1H NMR spectroscopy, as indicated in Scheme 1. Indeed, we have seen that the introduction of trimethyl orthoformate, which acts as a scavenger for aldehydes, into the reaction mixture gives the dimethyl acetal of the aldehyde with very high selectivity and completely inhibits the formation of the ester. Note that Au⊂CeO2 is also very active for the oxidation of alcohols in basic aqueous solution. In this case pH plays an important role, with the TOF decreasing upon lowering the pH. In basic aqueous solution, the oxidation of primary alcohols gives the carboxylic acids rather than the esters. Reaction route proposed for the formation of esters in the oxidation of primary alcohols. On the basis of the Au⊂CeO2 characterization and IR study, a reasonable mechanism for the catalytic reaction is depicted in Scheme 2. According to this mechanism, the interaction between gold and ceria will give rise to an important population of positively charged gold and Ce3+ species (detectable by XPS; step 1). The alcohol or the corresponding alkoxide will then react with the Lewis acid sites of Au⊂CeO2 to give a metal alkoxide (step 2), which subsequently undergoes a rapid hydride transfer from CH to Ce3+ and Au+ to give the ketone and CeH (indicated as LAH in Scheme 2) and AuH (as observed by IR spectroscopy; step 3). Upon admission of oxygen into the system and coordination to the oxygen-deficient sites of ceria, formation of cerium-coordinated superoxide (CeOO.) species occurs (step 4).32 These superoxide species evolve into cerium hydroperoxide by hydrogen abstraction from AuH (step 5), and are responsible for the formation, after reduction of CeIV, of the initial Au+ species. The absence of gold would render this step impossible and lead to a depletion of CeIII. This mechanism is compatible with the lack of influence of an excess of TEMPO in the reaction (see footnote [e] in Table 1), since TEMPO is not able to quench oxygen-centered radicals. Proposed mechanism for the oxidation of alcohols in the presence of Au⊂CeO2 as the catalyst. LA=Lewis acid. Kaneda et al. have reported recently that Pd supported on hydroxyapatite is the most active solid catalyst, with a turnover number of 236 000 and a TOF of 9800 h−1.12 We have been able to reproduce these results. Under the reported conditions our catalyst gives a TOF of 12 500 h−1 for the conversion of 1-phenylethanol into acetophenone at 160 °C, with greater than 99 % selectivity for the desired product. The catalyst is fully recyclable after filtering and washing (NaOH 0.5 M), with a TON of 250 000 after three recycles. This shows that gold, which was previously believed to be of little catalytic interest, can become an interesting oxidation catalyst when combined with the right support. In conclusion, we have shown that gold nanoparticles transform nanocrystalline cerium oxide from a stoichiometric oxidant into a catalytic material for the selective oxidation of primary and secondary alcohols to aldehydes and ketones in the presence of oxygen at atmospheric pressure, with high TOFs and selectivities observed. This catalyst makes the process interesting from both an economic and environmental point of view. Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2005/z500382_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余可馨发布了新的文献求助10
1秒前
4秒前
8秒前
科研通AI6应助余可馨采纳,获得10
10秒前
11秒前
菠萝发布了新的文献求助10
12秒前
UpLiu完成签到 ,获得积分10
25秒前
30秒前
39秒前
Jasper应助维颖采纳,获得10
42秒前
小花小宝和阿飞完成签到 ,获得积分10
47秒前
吴端完成签到,获得积分10
48秒前
贪玩老姆完成签到 ,获得积分10
53秒前
tj完成签到 ,获得积分10
58秒前
1分钟前
阳佟水蓉完成签到,获得积分10
1分钟前
1分钟前
所所应助zhvjdb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
可爱的函函应助早川采纳,获得10
2分钟前
馍夹菜完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430