A generalizable adaptive brain-machine interface design for control of anesthesia

麻醉剂 无意识 计算机科学 自适应控制 控制器(灌溉) 控制理论(社会学) 麻醉 人工智能 医学 控制(管理) 农学 生物
作者
Yuxiao Yang,Maryam M. Shanechi
标识
DOI:10.1109/embc.2015.7318557
摘要

Brain-machine interfaces (BMIs) for closed-loop control of anesthesia have the potential to automatically monitor and control brain states under anesthesia. Since a variety of anesthetic states are needed in different clinical scenarios, designing a generalizable BMI architecture that can control a wide range of anesthetic states is essential. In addition, drug dynamics are non-stationary over time and could change with the depth of anesthesia. Hence for precise control, a BMI needs to track these non-stationarities online. Here we design a BMI architecture that generalizes to control of various anesthetic states and their associated neural signatures, and is adaptive to time-varying drug dynamics. We provide a systematic approach to build general parametric models that quantify the anesthetic state and describe the drug dynamics. Based on these models, we develop an adaptive closed-loop controller within the framework of stochastic optimal feedback control. This controller tracks the non-stationarities in drug dynamics, achieves tight control in a time-varying environment, and removes the need for an offline system identification session. For robustness, the BMI also ensures small drug infusion rate variations at steady state. We test the BMI architecture for control of two common anesthetic states, i.e., burst suppression in medically-induced coma and unconsciousness in general anesthesia. Using numerical experiments, we find that the BMI generalizes to control of both these anesthetic states; in a time-varying environment, even without initial knowledge of model parameters, the BMI accurately controls these two different anesthetic states, reducing bias and error more than 70 times and 9 times, respectively, compared with a non-adaptive system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的青寒完成签到 ,获得积分10
刚刚
1秒前
漫漫长夜发布了新的文献求助10
1秒前
今后应助洁净的半鬼采纳,获得10
3秒前
zym999999发布了新的文献求助10
6秒前
研友_VZG7GZ应助大橘子采纳,获得10
7秒前
lynn完成签到 ,获得积分10
7秒前
田様应助漫漫长夜采纳,获得10
9秒前
lagom完成签到,获得积分10
9秒前
9秒前
Blaseaka完成签到 ,获得积分10
11秒前
陈晗予完成签到,获得积分10
11秒前
纤维素发布了新的文献求助10
12秒前
limeng完成签到,获得积分10
13秒前
kinzer完成签到 ,获得积分10
16秒前
XWT完成签到 ,获得积分10
16秒前
冷酷访烟完成签到 ,获得积分10
16秒前
16秒前
superhero完成签到,获得积分10
17秒前
zho发布了新的文献求助10
19秒前
漫漫长夜完成签到,获得积分20
19秒前
zzh319完成签到,获得积分10
20秒前
Hello应助一颗大白菜采纳,获得10
20秒前
zhull应助四叶草采纳,获得10
21秒前
哭泣的翠丝完成签到,获得积分10
22秒前
Lucas应助梁凯华采纳,获得10
23秒前
sxy关闭了sxy文献求助
24秒前
李健的小迷弟应助纤维素采纳,获得10
24秒前
2025alex完成签到,获得积分10
24秒前
27秒前
科研通AI2S应助Suen采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得10
39秒前
dinghaifeng应助科研通管家采纳,获得10
39秒前
dinghaifeng应助科研通管家采纳,获得10
39秒前
djiwisksk66应助科研通管家采纳,获得10
39秒前
上官若男应助科研通管家采纳,获得10
39秒前
温冰雪应助科研通管家采纳,获得10
39秒前
ED应助科研通管家采纳,获得10
39秒前
丘比特应助科研通管家采纳,获得10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958068
求助须知:如何正确求助?哪些是违规求助? 3504219
关于积分的说明 11117555
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788351
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511