A generalizable adaptive brain-machine interface design for control of anesthesia

麻醉剂 无意识 计算机科学 自适应控制 控制器(灌溉) 控制理论(社会学) 麻醉 人工智能 医学 控制(管理) 农学 生物
作者
Yuxiao Yang,Maryam M. Shanechi
标识
DOI:10.1109/embc.2015.7318557
摘要

Brain-machine interfaces (BMIs) for closed-loop control of anesthesia have the potential to automatically monitor and control brain states under anesthesia. Since a variety of anesthetic states are needed in different clinical scenarios, designing a generalizable BMI architecture that can control a wide range of anesthetic states is essential. In addition, drug dynamics are non-stationary over time and could change with the depth of anesthesia. Hence for precise control, a BMI needs to track these non-stationarities online. Here we design a BMI architecture that generalizes to control of various anesthetic states and their associated neural signatures, and is adaptive to time-varying drug dynamics. We provide a systematic approach to build general parametric models that quantify the anesthetic state and describe the drug dynamics. Based on these models, we develop an adaptive closed-loop controller within the framework of stochastic optimal feedback control. This controller tracks the non-stationarities in drug dynamics, achieves tight control in a time-varying environment, and removes the need for an offline system identification session. For robustness, the BMI also ensures small drug infusion rate variations at steady state. We test the BMI architecture for control of two common anesthetic states, i.e., burst suppression in medically-induced coma and unconsciousness in general anesthesia. Using numerical experiments, we find that the BMI generalizes to control of both these anesthetic states; in a time-varying environment, even without initial knowledge of model parameters, the BMI accurately controls these two different anesthetic states, reducing bias and error more than 70 times and 9 times, respectively, compared with a non-adaptive system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LMFY完成签到 ,获得积分10
1秒前
轻松的纸鹤完成签到,获得积分10
2秒前
2秒前
2秒前
5秒前
123完成签到 ,获得积分10
5秒前
jisimyang98发布了新的文献求助10
6秒前
medxyy完成签到,获得积分10
7秒前
风趣的茹嫣完成签到 ,获得积分10
7秒前
9秒前
rrr完成签到,获得积分10
10秒前
无花果应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得30
11秒前
大模型应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
不安青牛应助科研通管家采纳,获得10
12秒前
12秒前
不苦给不苦的求助进行了留言
12秒前
君莫笑完成签到 ,获得积分10
12秒前
鑫叶完成签到,获得积分10
13秒前
13秒前
张大力完成签到,获得积分20
14秒前
陈军应助加菲丰丰采纳,获得20
16秒前
16秒前
jisimyang98完成签到,获得积分10
17秒前
wll发布了新的文献求助10
17秒前
清风发布了新的文献求助30
18秒前
汉堡包应助愉快的宛儿采纳,获得10
18秒前
乐乐应助舒适嘉熙采纳,获得10
19秒前
19秒前
JIU夭发布了新的文献求助10
20秒前
思源应助王巧巧采纳,获得10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943