自愈水凝胶
透明质酸
生物相容性
组织工程
细胞外基质
脚手架
肿胀 的
动态力学分析
材料科学
化学
生物物理学
生物医学工程
化学工程
聚合物
高分子化学
生物化学
复合材料
有机化学
解剖
工程类
生物
医学
作者
Shaoquan Bian,Mengmeng He,Junhui Sui,Hanxu Cai,Yong Sun,Jie Liang,Yujiang Fan,Shouxin Zhang
标识
DOI:10.1016/j.colsurfb.2016.01.008
摘要
Although the disulfide bond crosslinked hyaluronic acid hydrogels have been reported by many research groups, the major researches were focused on effectively forming hydrogels. However, few researchers paid attention to the potential significance of controlling the hydrogel formation and degradation, improving biocompatibility, reducing the toxicity of exogenous and providing convenience to the clinical operations later on. In this research, the novel controllable self-crosslinking smart hydrogels with in-situ gelation property was prepared by a single component, the thiolated hyaluronic acid derivative (HA-SH), and applied as a three-dimensional scaffold to mimic native extracellular matrix (ECM) for the culture of fibroblasts cells (L929) and chondrocytes. A series of HA-SH hydrogels were prepared depending on different degrees of thiol substitution (ranging from 10 to 60%) and molecule weights of HA (0.1, 0.3 and 1.0M Da). The gelation time, swelling property and smart degradation behavior of HA-SH hydrogel were evaluated. The results showed that the gelation and degradation time of hydrogels could be controlled by adjusting the component of HA-SH polymers. The storage modulus of HA-SH hydrogels obtained by dynamic modulus analysis (DMA) could be up to 44.6 kPa. In addition, HA-SH hydrogels were investigated as a three-dimensional scaffold for the culture of fibroblasts cells (L929) and chondrocytes cells in vitro and as an injectable hydrogel for delivering chondrocytes cells in vivo. These results illustrated that HA-SH hydrogels with controllable gelation process, intelligent degradation behavior, excellent biocompatibility and convenient operational characteristics supplied potential clinical application capacity for tissue engineering and regenerative medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI